The Medium is the Message

Marshall McLuhan’s famous declaration “The medium is the message” never made sense to me. It sounded cool, but on the surface there was not enough there to offer much of an explanation. It seemed one of those things other people understood and used, but I did not. Perhaps I had missed the class or not read the book in which the famous phrase was explained.

The expression came up again in the book club I joined while we reading a book by Johns (The Science of Reading). A sizeable proportion of one chapter considers McLuhan’s famous proposal and provided a reference to his first use of the phrase. The original mention was a comment he made at a conference and then continued to develop. 

The page is not a conveyor belt for pots of message; it is not a consumer item so much as a producer of unique habits of mind and highly specialized attitudes to person and country, and to the nature of thought itself (…) Let us grant for the moment that the medium is the message. It follows that if we study any medium carefully we shall discover its total dynamics and its unreleased powers.

Print, by permitting people to read at high speed and, above all, to read alone and silently, developed a totally new set of mental operations.

Johns’ book is about the history of the study of reading as a science with more on how reading and the methods by which reading skill is developed became a political issue. My effort to create a personal understanding of what any of this would have to do with McLuhan now is based on my consideration of different media and what McLuhan had to say specifically about reading. I have come to think about reading as a generative activity which is a topic I write about frequently. From this perspective, reading is an external task that gives priority to certain internal behaviors. In contrast to some other media, reading allows personal control of speed. A reader can take in information quickly or pause to reflect. A reader can reread. Text sometimes requires the reader to generate imagery in contrast to having imagery offered to them as would be the case with video. Reading cannot transfer a complete experience from author to reader and much is constructed by the reader based on existing knowledge. Reading has a social component. In most cases reading involves an implied interaction with an author, but also with others who have interpreted the same input and who often interact to share personal interpretations. 

What McLuhan had to say about media now reminds me of the notion of affordances. Affordance refers to the potential actions or uses that an object or environment offers to an individual, based on its design and the individual’s perception of it. The term was originally coined by psychologist James J. Gibson in the context of ecological psychology to describe the possibilities for action that the environment provides. Affordances can be both obvious (like a door handle that affords pulling) or less obvious, depending on how the individual perceives and interacts with the object or environment. It is this less obvious type of affordance that applies based on expectations for texts and for how we anticipate texts to be used. Factors such as the allowances for controlling speed and pausing with a medium that is essentially static when we are not interacting with it to allow reflection are more like the obvious affordances Gibson proposes.

Those who reject a media effect

Having reached what I hope is an appropriate understanding of McLuhan’s famous insight, I realized that I have encountered a contradictory argument commonly taught within one of my fields of practice (educational technology). This controversy concerns what tends to be called the media effect

The “media effect” refers to the idea that the medium or technology used to deliver instruction (such as television, computers, or textbooks) has a significant impact on learning outcomes. This concept suggests that different media can produce different levels of learning or change the way people learn.

This perspective was challenged by Richard Clark in his influential 1983 article, “Reconsidering Research on Learning from Media.” Clark argued that the media itself does not influence learning; rather, it is the instructional methods and content delivered through the media that determine learning outcomes. Clark famously stated, “media are mere vehicles that deliver instruction but do not influence student achievement any more than the truck that delivers our groceries causes changes in our nutrition.”

Clark’s challenge to the media effect emphasized that it’s the instructional design, the way content is presented, and the interaction between learners and content that are crucial for learning, not the medium through which the instruction is delivered.

I always struggled when teaching this position. Instructional designers are expected to consider this argument, but my interpretation never allowed me to understand why this would be true. If I wanted to teach someone the cross-over dribble, wouldn’t it make more sense to begin by showing the move rather than describing it with text? I understand that each of us learns through our own cognitive actions, but how we access inputs (external representations) would seem to matter in what our cognitive behaviors have to work with. When you ask advanced students to deal with arguments such as Clark’s that challenge actions they might be prone to take, it is common to match the challenging position with a source that offers a counterargument. I paired Clark’s paper with a paper written by Robert Kozma. If you are inclined to pursue this controversy, I recommend this combination.

Does it matter?

Possibly. I think we are experiencing changes in how we experience information. Most of us experience more and more video both for entertainment and for learning. It is worth considering how we might be influenced by the medium of input. If we are trying to learn more frequently from video, how do we attempt to process the video experience in a way similar to how we can take control and process text? 

References:

Clark, R. E. (1983) Reconsidering research on learning from media. Review of educational research 53 (4), 445-459.

Johns, A. (2023). The science of reading: Information, media, and mind in modern America. University of Chicago Press.

Kozma, R. B. (1994). Will media influence learning? Reframing the debate. Educational technology research and development, 42(2), 7-19.

*

Loading

Desirable Difficulty

Despite a heavy focus on cognitive psychology in the way I researched and explained classroom study tactics, I had not encountered the phrase desirable difficulty until I became interested in the handwritten vs. keyboard notetaking research. I discovered the idea when reviewing studies by Luo and colleagues and Mueller and Oppenheimer. Several studies have claimed students are better off taking notes by hand in comparison to on a laptop despite being able to record information significantly faster when using a keyboard. 

Since having a more complete set of notes would seem an advantage. The combination of more notes associated with poorer performance is counterintuitive. Researchers speculated that learners who understood they had to make decisions about what they had time to record selected information more carefully and possibly summarized rather than recorded verbatim what they heard. This focus on what could be described as deeper processing seemed like an example of desirable difficulty. The researchers also proposed that the faster keyboard recording involved shallow cognitive processing.  

Note: I am still a fan of more complete notes and the methodology used when demonstrating better performance from recording notes by hand needs to be carefully considered. I will comment on my argument more at the end of this post. 

Desirable difficulty an idea attributed to Robert Bjork has been used to explain a wider variety of retention phenomena. Bjork suggested that retrieval strength and storage strength are distinct phenomena and learners can be misled when an approach to learning is evaluated based on retrieval strength. I find these phrases to a bit confusing as applied, but I understand the logic. Students cramming for an exam make a reasonable example. Cramming results in what may seem to be successful learning (retrieval strength), but results in poorer retention over an extended period of time (storage storage strength). Students may understand and accept the disadvantages of cramming so it is not necessary that the distinction be unrecognized by learners. In a more recent book on learning for the general public, Daniel Willingham suggests that the brain is really designed to avoid rather than embrace thinking because thinking is effortful. The human tendency is to rely on memory rather than thinking. Desirable difficulty may be a way to explain why some situations that require thinking prevent something more rote. 

Increasing difficulty to improve retention

There are multiple tactics for productively increasing difficulty that I tend to group under the heading of generative learning. I describe generative activities as external tasks intended to increase the probability of productive cognitive (mental) behaviors. I suppose desirable difficulty is even more specific differentiating external tasks along a difficulty dimension. So in the following list of tasks, it is useful to imagine more and less difficult tasks. Often the less difficult task is the option learners choose to apply. In connecting these tactics with personal experience, I would recommend you consider the use of flashcards to conceptualize what would be the easier and the more challenging application. Then, move beyond flashcards to other study tactics and consider if you can identify similar contrasts. 

Retrieval Practice: Testing oneself on the material rather than passively reviewing notes is considered retrieval practice. The classic empirical demonstration of the retrieval practice or the testing effect compared reviewing content versus responding to questions. Even when controlling for study time, spending some time on questions was superior. With the flashcard applications I recommended you consider, answering multiple-choice questions would be less challenging than answering short-answer questions (recognition vs recall).

Spacing (Distributed Practice): Instead of cramming, spreading out study sessions over time is more productive. This method helps improve long-term retention and understanding. Spacing allows some retrieval challenges to develop and the learner must work harder to locate the desired information in memory. See my earlier description of Bjork’s distinction between retrieval strength and storage strength. 

Interleaving: Mixing different types of problems or subjects in one study session. For example, alternating between math problems and reading passages rather than focusing on one at a time. A simple flashcard version of this recommendation might be shuffling the deck between cycles through the deck. Breaking up the pattern of the review task increases the difficulty and requires greater cognitive effort. 

Other thoughts

First, the concept of committing to more challenging tasks is broader than the well researched examples I provide here. Writing and teaching could be considered examples in that both tasks require an externalization of knowledge that is both generative and evaluative. It is too easy to fake it and make assumptions when the actual creation of a product is not required.

Second, desirable difficulty seems to me to be a guiding principle that does not explain all of the actual cognitive mechanisms that are involved. The specific mechanisms may vary with activity – some might be motivational, some evaluative (metacomprehension), and some at the level of basic cognitive activities. For example, creating retrieval challenges probably creates an attempt to find alternate or new connections among stored elements of information. For example, in trying to put a name with a face one might attempt to remember the circumstances in which you may have met or worked with this person and this may activate a connection you do not typically use and is not automatic. For example, after being retired for 10 years and trying to remember the names of coworkers, I sometimes remember the arrangement of our offices working my way down the appropriate hallway and this sometimes helps me recall names. 

I did say I was going to return to the use of desirable difficulty as a justification for the advantage of taking notes by hand. If keyboarding allows faster data entry than handwriting, in theory keyboarding would allow more time for thinking, paraphrasing, and whatever advantage one would have when the recording method requires more time. Awareness and commitment would seem to be the issues here. However, I would think complete notes would have greater long-term value than sparse notes. One always has the opportunity to think while studying and a more complete set of notes would seem to provide the opportunity to have more external content to work with. 

References:

Bjork, R.A. (1994). Memory and metamemory considerations in the training of human beings. In J.  Metcalfe & A. Shimamura (Eds.), Metacognition: Knowing about knowing (pp. 185-205). Cambridge,  MA: MIT Press.

Luo, L., Kiewra, K. A., Flanigan, A. E., & Peteranetz, M. S. (2018). Laptop versus longhand note taking: effects on lecture notes and achievement. Instructional Science, 46(6), 947-971.

Mueller, P. A., & Oppenheimer, D. M. (2014). The pen is mightier than the keyboard: Advantages of longhand over laptop note taking. Psychological science, 25(6), 1159-1168.

Willingham, D. T. (2021). Why don’t students like school?: A cognitive scientist answers questions about how the mind works and what it means for the classroom. John Wiley & Sons.

Loading

Potential conflicting benefits of your note-taking tool and approach

As I have explored and used several digital note-taking tools and examined the arguments that have been made regarding how such tools result in productivity benefits, I have identified a potential conflict in what produces more positive outcomes. The recognition of this conflict allows more purposeful execution on the part of the tool user and may better align activities with goals.

One way to identify note-taking goals is to use a long-standing approach differentiating generative and external storage benefits. This distinction was proposed long before PKM and was applied in the analysis of notes taken in classroom settings. The generative benefit proposes that the process of taking notes or sometimes of taking notes in a particular way engages our cognitive (mental) processes in ways that improve retention and understanding. External storage implies that our memory becomes less effective over time and having access to an external record (the notes) benefits our productivity. In practice (e.g., a student in a classroom) both benefits may apply, but one benefit depends on the other activity. Taking notes may not be beneficial, but to review notes one must have something to review. This is not always true as notes in one form or another can be provided or perhaps generated (for example AI identification of key ideas), but taking your own notes is by far the most common experience. In a PKM way of thinking, these two processes may function in different ways, but the classroom example should be familiar as a way to identify the theoretical benefits of note-taking.

I have written about the generative function of note-taking at length, but it is important to point out some unique specifics that apply to some digital note-taking tools. A source such as Ahrens’ Taking Smart Notes might provide the right mindset. I think of generative activities as external actions intended to produce a beneficial mental (cognitive) outcome. The idea is that external activities can encourage or change the likelihood of beneficial thinking behaviors. One way of operationalizing this perspective is to consider some of the specific activities Ahrens identified as external work resulting in such cognitive benefits. What are some of these activities? Isolating specific ideas and summarizing each as a note. Assigning tags that characterize a note. Making the effort to link notes. Periodically reviewing notes to generate retrieval practice, to reword existing notes, and to add new associations (links).

Retrieval is easier to explain. Note-taking apps with highly effective search capabilities make it easy to search and surface stored information when it might be useful. Links and tags may also be useful in this role, but search alone will often be sufficient.

What about the potential conflict?

The conflict I see proposes that some tools or approaches rely more heavily on search arguing in a way that generative processes are unnecessary.

I starting thinking about this assumption when contrasting the two note-taking systems I rely on – Mem.ai and Obsidian. While Mem.AI and Obsidian could be used in exactly the same way, Mem.ai developers argued that the built-in AI capabilities could eliminate the need to designate connections (with tags and links) because the AI capabilities would identify these connections for you. Thus when retrieving information via search, a user could use AI to also consider the notes with overlapping foci. If a user relied on this capability it would eliminate the work required to generate the connections manually created in Obsidian, but this approach would then also avoid the generative benefits of this work. 

AI capabilities fascinate me so I found a way to add a decent AI capability to Obsidian. Smart Connections is an Obsidian plugin that finds connections among notes and allows a user to chat with their notes. So, I found a way to mimic Mem.ai functionality with Obsidian. 

I find I have found a way to alter my more general PKM approach because of these capabilities. Rather than taking individual notes while reading, I can annotate and highlight pdfs, books, and videos and export the entire collection for each source and then bring this content into both Mem.ai and Obsidian as a very large note. Far easier than taking individual notes, but at what generative cost?

Smart Connections has added a new feature that even facilitates the use of the large note approach. Connections finds connections based on AI embeddings. An embedding is the mathematical representation of content (I would describe as weights based on what I remember of statistics). The more two notes embeddings’ weights are similar the more the notes consider similar ideas. Smart Connections used embeddings to propose related notes. Originally embeddings were generated at the note level and now at the “block” level. What this means (block level) is that Smart Connections can find the segments of a long document that have a similar focus as a selected note. 

Why is this helpful? When I read long documents (pdfs of journal articles or books in Kindle), I can export a long document containing my highlights and notes generated from these documents. With Smart Connections I can then just import this exported material into Obsidian and use Smart Connections to connect a specific note to blocks of all such documents. I can skip breaking up the long document into individual notes and assigning tags and creating links.

Why is this a disadvantage? Taking advantage of this capability can be a powerful disincentive to engaging in the generative activities involved in creating and connecting individual notes the basic version of Obsidian requires. 

Summary

As note-taking tools mature and add AI capabilities, it is important for users to consider how the way they use such tools can impact their learning and understanding. The tools themselves are quite flexible but can be used in ways that avoid generative tasks that impact learning and understanding. If the focus is on the retrieval of content for writing and other tasks, the generative activities may be less important. However, if you start using a tool such as Obsidian because a book such as Smart Notes influenced you, you might want to think about what might be happening if you rely on the type of AI capabilities I have described here. 

References
Ahrens, S. (2022). How to take smart notes: One simple technique to boost writing, learning and thinking. Sönke Ahrens.

Loading

Writing to Learn Research – Messy

Writing to learn is one of those topics that keeps drawing my attention. I have an interest in what can be done to encourage learning and approach this interest by focusing on external tasks that have the potential to manipulate the internal cognitive (thinking) behavior of learners. My background in taking this perspective is that of an educational psychologist with a cognitive perspective. I have a specific interest in areas such as study behavior trying to understand what an educator or instructional designer can do to promote experiences that will help learners be more successful. The challenge seems obvious – you cannot learn for someone else, but you may be able to create tasks that when added to exposure to sources of information encourage productive “processing” of those experiences. We can ask questions to encourage thinking. We can engage students in discussions that generate thinking through interaction. We can assign tasks that require the use of information. Writing would be an example of such an assigned task. 

Writing to Learn

Writing to learn fits with this position of an external task that would seem to encourage certain internal behaviors. To be clear, external tasks cannot control internal behavior. Only the individual learner can control what they think about and how they think about something, but for learners willing to engage with an external activity that activity may change the likelihood productive mental behaviors are activated.

I found the summary of the cognitive benefits of writing to learn useful and consistent with many of my own way of thinking about other learning strategies – external tasks that encourage productive internal behaviors. Writing based on content to be learned requires that the writer generate a personalized concrete representation at the “point of utterance”. I like this expression. To me, it is a clever way of saying that when you stare at the screen or the empty sheet of paper and must fill the void you can no longer fool yourself – you either generate something or you don’t. You must use what you know and how you interpret the experiences that supposedly have changed what you know to produce an external representation.

To produce an external product, you must think about what you already know in a way that brings existing ideas into consciousness (working memory) by following the connections activated by the writing task and newly acquired information. This forces processing that may not have occurred without the external task. Connections between existing knowledge and new information are not necessarily made just because both exist in storage. Using knowledge to write or to perform other acts of application encourages making connections.

Such attempts at integration may or may not be successful. Having something external to consider offers the secondary benefit of forced metacognition. Does what I wrote really make sense? Do the ideas hang together or do I need to rethink what I have said? Does what I have proposed fit with the life experiences (episodic memory) I have had? 

Writing ends up as a generative process that potentially creates understanding and feeds the product of this understanding back into storage.

Graham, Kiuhara & MacKay, M. (2020)

In carefully evaluating and combining the results of many studies of writing to learn, these researchers intended not only to determine if the impact of writing to learn had the intended general benefit but to use the variability of writing tasks and outcomes from studies to deepen our understanding of how writing to learn encouraged learning. Surely, some activities would be more beneficial than others because of the skills and existing knowledge of learners or the specifics of the assigned writing tasks. So, the meta-analysis is asking if there is a general effect (Is writing to learn effective), and secondarily are there significant moderator variables that may help potential practitioners decide when, with whom, and how to structure writing to learn activities?

The Graham and colleagues’ research focused only on K12 learners. Potential moderator variables included grade level, content area (science, social studies, mathematics), type of writing task (argumentation, informational writing, narrative), and some others. I have a specific interest in argumentation () which is relevant here as a variable differentiating the studies because it requires a deeper level of analysis than say a more basic summary of what has been learned. 

Overall, the meta-analysis demonstrated a general benefit for writing to learn (Effect size = .30). This level of impact is considered on the low end of a moderate effect. Graham and colleagues point out that the various individual studies included in the study generated great variability. A number of the studies demonstrated negative outcomes meaning in those studies the control condition performed better than the group spending time on writing to learn. The authors propose that this variability is informative as it cannot be assumed that any approach with this label will be productive. The variability also suggests that the moderator variables may reveal important insights.

Unfortunately, the moderator variables did not achieve the level of impact necessary to argue for useful insights as to how writing to learn works or who is most likely to be a priority group for this type of activity. Grade level was not significant. The topic area was not significant. The type of writing task was not significant. 

Part of the challenge here is having enough studies focused on a given approach with enough consistency of outcomes to allow statistical certainty in arguing for a clear conclusion. Studies that involved taking a position and supporting that position (e.g., argumentation) produced a much larger effect size, but the statistical method of meta-analysis did not reach the level at which a certain outcome could be claimed. 

One interesting observation from the study caught my attention. While writing to learn is used more frequently in social studies classrooms, the number of research studies associated with each content areas was the smallest for social studies. Think about this. Why? I wonder if the preoccupation of researchers and funding organizations with STEM is responsible. 

More research is needed. I know practitioners and the general public get tired of being told this, but what else can you recommend when confronted with the messiness of much educational research? When you take ideas out of carefully controlled laboratories and try to test them in applied settings the results here are fairly typical. Humans left to their own devices as implementers of procedures and reactors to interventions are all over the place. Certainly, the basic carefully controlled research and the general outcome of meta-analysis focused on writing to learn implementation are encouraging, but as the authors suggest the variability in effectiveness means something, and further exploration is warranted.

Reference

Graham, S., Kiuhara, S. A., & MacKay, M. (2020). The effects of writing on learning in science, social studies, and mathematics: A meta-analysis. Review of Educational Research90(2), 179-226.

Loading

Design learning experiences using generative activities – Layering

I have written multiple posts explaining generative activities and how such external activities encourage productive cognitive behaviors. Some of these posts describe specific classroom applications of individual generative tasks. In this post, I intend to describe how educators can apply some of these generative activities when they assign web content (pages or videos).

In many cases, online content assigned in K12 classrooms was not prepared as instructional content. For example, an article from Scientific American might offer information relevant to a specific standard addressed in sophomore biology. What activities might an instructor add to help learners understand, remember, and possibly apply concepts within this article. For example, a textbook would likely have activities inserted at the end of a chapter, added as boxes within content, or recommended in a teacher’s manual. Instructors often make additions as class assignments. What I am supporting here is similar to what educational researchers have described as adjunct questions. These were originally questions added within instructional texts or attached at the end of such texts. Embedded activities play different roles than even the same activities might play when delayed and isolated from the informative content. At the time of initial exposure, my argument is that there is a difference between information and instructional content and the connection of generative learning activities is a way to make this transition. 

A couple of years ago I became interested in a group of online services that were developed to improve the educational value of online content (web pages and videos). I developed my own way of describing what these services were developed to accomplish. Layering seemed a reasonable description because these services could not actually modify the content originally shared by content creators for ethical and legal reasons. What a layering service could do was take the feed from the creator’s service and add elements on top of that content. Elements were additions that could encourage important cognitive behaviors in a learner.

With a layering service, the content a learner encounters is a combination of the content from the content creator and additions layered on this content. Two sources and servers are involved. From the perspective of a designer, a layering service works by accepting the URL for a web page or video from the designer and then allows the designer to add elements that appear within or on top of the content from the designated source. The layering service sends this combination to the learner and this does not change the original document and still downloads the original from the server each time the combination of original and layered content is requested by a user. Ads still appear and the content server still records the download to give the creator credit. The layering service generates a link provided to learners and recreates the composite of content and designer additions each time a learner uses that link. 

Questions are my favorite example of an external activity that can be added to encourage a variety of important thinking (internal) behaviors. For example, if you want a learner to link a new concept to everyday experiences the concept is useful in understanding, you might ask the learner to provide examples that show the application of the concept. Many learners may do this without the question, but the question increases the likelihood more learners will work to identify such connections with their existing experiences. Those who think about instruction in this way may describe what they are doing as designing instruction. I offer an extended description of generative activity in a previous post. 

Depending on the specific service, the elements that layering services I am aware of include annotations, highlighting, questions, and discussion prompts. Annotations could include additional material such as examples, translations, or instructions. Questions could be open-ended or multiple-choice. A few of these elements could also be added by the learner (highlights and annotations) so elements provided to the designer could be used to encourage specific use of the elements available to students.

My personal interest in promoting layering services is intended to encourage the use of services that allow educators, educational content designers, and learners to work with this content to provide more effective learning resources and more generative learning experiences. In addition, content creators have a right to assume the server used by the content creator will be contacted each time content is requested and inclusions such as ads are included. The expectations of the content creator are not ignored when using a layering service.

I have identified several services that meet my definition of a layering service. Here, I will describe one service focused on web pages and one that focused on video. Other examples can be explored from the page linked above and I assume others exist that I have not identified. Services are constantly being updated, but I have just worked with the two examples I describe here and this information should be current as of the uploading of this post.

Insert Learning

Insert Learning is my best example of the services promoted here. I say this because it offers the most generative options and the generative options are part of an environment allowing an educator to both create multiple lessons, assign these lessons to members of multiple classes, and record data on student completion of some of the types of activity involved in individual lessons. 

The following image should give you some idea how this works. Down the left border of the image, you see a menu of icons allowing the designer to select highlight, note, question, and discussion. Highlight and note work as one probably expects. When the icon is selected text can be highlighted by the designer or learner. The note icon adds what appear as Postit notes allowing the inclusion of text, links, images, video, and whatever else works as an embed. The question icon adds questions either multiple choice as appears in the image or open-ended. The discussion icon appears very much like an open-ended question but accumulates and displays responses from multiple learners to a prompt. 

As I said, Insert Learning differentiates itself from many of the other services because the layering component is part of a system that allows the assignment of lessons to individual students organized as classes and also collects responses to questions by lesson and student. The following image shows a couple of responses to an open-ended question. I used Insert Learning in a graduate course I taught in Instructional Design. I made use of several of the tools I presented to students even when the most common use would be in K-12. This image shows how responses to questions would appear in the Grade Book. I could assign a score to a response and this score would then be visible to the student submitting a given response. 

It has been a few years since I used Insert Learning. When I did, I paid $8 a month. I see the price has now increased to $20 a month or $100 for the year. 

EdPuzzle 

EdPuzzle is a service for adding questions and notes to videos. It includes a system for adding these elements, assigning these videos to students, and saving student responses to questions. The following images are small to allow them to be inserted in this post. In the following image, the red box on the right allows the selection of the element to be added – MC question, open-ended question, and note. The timeline underneath the video (middle) is also enclosed in a red box. As the designer watches the video, clicking one of these buttons stops the video and allows the selected addition to be included. A dot appears below the timeline to indicate where an element has been added. A learner can either play the video which will stop for a response when one of these inclusions is reached or select one of the dots to respond. The second image shows the dialog box used to add an open-ended question. 

In the video I used in this example, I created a demonstration using Python to run LOGO commands and saved the video to YouTube. Again, this was a demonstration used in a graduate edtech course. Early in the video, I showed and explained the LOGO code. The video then showed the result of running this program.

When using EdPuzzle with this video, I inserted a note asking students to take a pencil and sheet of paper to draw what the LOGO program would create. Near the end of the video, I inserted an open-ended question asking that students explain how Papert’s notion of computational understanding would provide a different way of thinking about the traditional definition of circle (i.e., a plane closed figure with points equidistant from a point). 

I used the free version of EdPuzzle because I only assigned students to a few examples to experience what the service provided. You can do a lot with this service at no cost. The pro-level price is $13.50 per month. EdPuzzle Pricing 

Summary these two examples demonstrate the use of layering services to add generative activities to a web page and a web video. There are similar services available from other companies that generate similar student experiences. The value in such services is the opportunity to design learning experiences containing activities likely to improve understanding and retention.

Loading

The Power of Collaboration: Enhancing Your Note-Taking Experience

This post is intended to be the final contribution in my series of posts describing generative activities and classroom applications. My previous contributions identified two hierarchical systems, SOI (selective, organizing, integrative) and ICAP (interactive, constructive, active, passive), proposing more and less powerful activities for influencing learning effectiveness. Both systems propose collaborative activities to be potentially most effective. Several of my posts have concerned how taking notes can improve achievement so I decided to conclude this series with a focus on collaborative notetaking.

Before I address the topic of collaboration, it may be helpful to provide a more general background on how educational psychologists and researchers such as me describe the process of taking notes. First, we differentiate the overall process into a storage and a retrieval phase. I assume this is obvious. A learner takes notes at one time to improve performance of some type at a later time. Second, we identify what might be accomplished during each stage. What is recorded during the storage phase determines what is available during the retrieval (study) phase. Learners may differ in how completely and how effectively they record key ideas so both completeness and quality of what is recorded could be important. The idea of a generative activity also proposes that the process of taking notes (whether available for review or not) might be helpful because of the cognitive activities that are involved. By extension, an instructor could prepare a quality set of notes and give them to students so they don’t have to take notes themselves. It matters if having personally taken notes is key to effectiveness. So attempts to determine if taking notes yourself has some unique value are useful.

Again, the importance of a retrieval and a study phase probably seems obvious. But again, there are important wrinkles that could be important. Does it matter if you review your own notes in comparison to expert notes? When in the time period between taking notes and the attempt to use knowledge should notes be reviewed? How many times and in what ways should this external record be used for review?

How might collaboration impact these processes? Some of the ways in which collaboration might modify notetaking are generative and some not. Collaboration could mean that others record notes you miss or record some things more accurately than you and access to their notes would allow you to achieve a more complete and a more accurate representation of the content. Maybe you just miss some things or misunderstand some things. When you have help, maybe you can record less and think more during the reception phase reducing the working memory demands of taking notes. These factors could be important if you don’t “slack off” knowing that you have some way to augment your own optimal efforts. These advantages are not generative. Collaboration could also involve actual interaction. Learners could discuss their understanding in reviewing their composite notes adding additional processing to what individuals might do on their own. This is what generative notetaking really proposes.

There are lots of other variations in notetaking that might be important and could be beneficial or harmful. There are postprocessing variations other than talking through notes with other students. Some systems (e.g., Cornell notes) propose a system of postprocessing?—?a secondary process of commenting on notes. Other ways of working with notes taken (Smart notes) also can be applied as part of the retrieval/study stage.

Another interesting proposal challenges the way we tend to think about taking in information during a live lecture. With asynchronous presentations that were increasingly common during the pandemic and also a way to think about the advantages of a flipped classroom, content is experienced in a recorded format. A learner or a small group of learners can control the pace of the presentation by simply stopping the playback of a video or even repeating segments of a recording reducing the working memory and note creation challenges of keeping up. With recorded content, a small group of students can even discuss as they record notes making the process more generative.

I have several motives in presenting notetaking in this way. First, I wanted those who think the processes are simple and fixed to think again. Second, I wanted to set you up for arguing that while determining if collaboration helps or not is pretty straightforward, understanding why what is observed in a dependent variable is not obvious. For example, if collaboration improves achievement, does this happen because the combination of notes is more complete and accurate or because the process of students working together led to some unique processing that would not have occurred without the interaction. Some have even observed that collaboration led to better quiz performance, but poorer implementation of the skills being taught (Fanguy, et al. 2021). These authors argued that the processing required of individual learners varied as a function of whether they had to depend entirely on their own notes. Deep understanding required for application might suffer when responsibility was shared.

I have concluded based on a review of most of the studies on collaborative notetaking that teasing apart the potential benefits does not presently allow clear conclusions. The core problem is that it is difficult to document how much actual interaction occurs and what are the characteristics of such interactions. Fanguy, et al. (2023) offer some interesting suggestions for how interaction might be operationalized, but few studies have included such data. So while studies do demonstrate the positive impact of collaborative notes (e.g. Baldwin, et al. 2019), the mechanisms responsible are unclear.

One additional factor is likely quite significant. Group comparisons between individual and collaborative notetaking ignore the individual nature of contributions within the collaborative groups (Fanguy, et al., 2023). No matter the nature of the inputs, we all learn as individuals and without a mechanism for identifying the type and extent of individual involvement, group comparisons will always be somewhat deficient. Even if group differences can be demonstrated, some within a group may benefit and some may not. The typical ending for many research articles?—?more research is needed?—?clearly applies to this topic.

One final point, I can and will suggest several digital collaborative tools for those of you who are interested, but I also caution that it is important to understand the purpose and hence perhaps the the strategies of notetaking that are to be recommended. As an academic, I studied student notetaking as would be applied to improve performance on future examinations. In my own work as an academic, I was and continue to be interested in the way I can take notes myself. There are several important differences in these circumstances. A student needs to understand the priorities of the course and instructor as would be relevant to an upcoming examination or writing project to take the most useful notes. Complete notes when requirements are unknown would seem a reasonable goal. My own goals are more self-imposed, but also are to record information that would potentially be useful over a much longer span of time. Capturing what seem to be important ideas in a form that will make sense to me several years in the future seems a different task.

Recommendations:

Google docs?—?collaborative notetaking may work with tools already familiar to educators. Multiple studies I have reviewed were conducted by assigning small groups of students (say 4–5) to a common Google doc file.

Hypothes.is?—?Hypothesis is a free tool that has been around for a while and is increasingly integrated into many LMSs used in higher ed. The tool is flexible allowing annotations and highlights to be publicly shared or shared with a designated group.

Glasp?—?Glasp is a recent entry to this category and is the tool I use for my own work. I like the tool because it is flexible in ways similar to Hypothesis and allows me to export the content I generate for long-term use in other Personal Knowledge Management (PKM) systems.

References:

Baldwin Matthew, P., Mik, F., & Costley Jamie, H. (2019). The effects of collaborative note-taking in flipped learning contexts. Journal of Language and Education, (4), 20.

Fanguy, M., Baldwin, M., Shmeleva, E., Lee, K., & Costley, J. (2021). How collaboration influences the effect of note-taking on writing performance and recall of contents. Interactive Learning Environments, 1–15.

Fanguy, M., Costley, J., Courtney, M., & Lee, K. (2023). Analyzing collaborative note-taking behaviors and their relationship with student learning through the collaborative encoding-storage paradigm. Interactive Learning Environments, 1–15.

Loading

Note-taking as a generative activity

When explaining it helps to have examples both for personal understanding and for communication. My more recent interest in long-term notes has provided a useful example that relates well to my long/term interest in generative activities. This specific collection of note collection activities is convenient because the activities are similar yet illustrate important differences. Notetaking is also an activity most have applied and comments on variations in how the activity can be applied are relatable contributing to my efforts to communicate. My more general goal is to help educators understand the purpose behind the assignments or study suggestions they make. 

Generative activities are external tasks learners engage in that encourage productive cognitive behaviors. External tasks to influence thinking activities. Several researchers have identified hierarchies that attempt to explain the benefits of the external tasks and differentiate the less and more powerful activities.

Two examples of hierarchies include the proposals of Chi (2009) and Fiorella and Mayer (2016)

Chi (2009) proposed the SOI framework – selective, organizing, and interactive.

Fiorella and Mayer (2016) proposed a similar ICAP framework (reversed here to show the parallels with Chi) – passive, active, constructive, interactive.

Some further clarification may be necessary. Selective seems self-explanatory. When reading selective is the active process of identifying important material. Constructive, when applied to taking notes, has a specific meaning. It implies the integration of new information with what one already knows. For example, thinking of an example (something you already know) associated with a concept or principle just learned creates a new representation. The learner is putting things together or finding applications. Interactive as defined here is a social process. It could relate to processes such as might be involved in cooperative learning. Both parties or even a larger group combine their individual understandings to create a superior composite.

I am relating these hierarchies to note-taking activities as might be explained by Aherns (2022). This author described notetaking in a little different way than might be assumed to apply in a school or college setting. I like to think of it as taking notes for the long term. This might describe the purpose I have for taking notes. I am not taking notes for an exam in a couple of weeks or at the end of the semester. I am not taking notes to write a paper for my instructor. I am engaging in reading for purposes that might be realized in a few years. I want my notes to be useful when in the future I have a need for the information I understood when the note was created, but may not be remembered when that information would be valuable. 

I am extending Aherns a bit here, but a sequence based on his writing might include the following:

  • Reading
  • Highlighting/ fleeting notes
  • Smart note
  • Collaborative note

Here are some clarifications of these terms. Reading (or listening) is the lowest stage and involves the exposure to information. Fleeting notes involve the recording of information with little elaboration. Students tend to take this type of notes while listening to a lecture possibly because they must get the information down while the lecturer continues to speak. Highlighting is similar in that it involves selection with little additional processing. Smart notes is Ahern’s term for notes that I remember him describing as providing sufficient context that a note would make sense to me in the future. In other words, this type of note must stand alone as a useful resource. Such notes would also be understandable by others with reasonable background knowledge.

It is important to recognize that learner engagement in generative activities involves potential rather than guaranteed benefits. Roscoe and Chi offer an interesting way of describing potential. They were writing about peer teaching as a generative activity, but the distinction they identify makes sense when applied to other activities. Their distinction is between knowledge telling and knowledge building. If learners are asked to explain a concept to a peer or summarize a concept as a note, they can repeat what they heard or read or they can interpret what they have heard or read in generating an output. Similarly, learners can merge their notes with a peer or they can compare and contrast their notes resulting in deeper processing of the content.

Because most generative activities involve the production of a product, educators can review these products from time to time to evaluate how active learners are being in thinking about what they are learning.

Insights

A few additional comments to consider as a summary. These ideas are interesting and quite concrete. In addition, the analyses are realistic in recognizing that positive results are not automatic.

First, what may seem to be a similar activity may have different consequences as a function of the kind of thinking applied

Second, it is what the student does in completing a generative task that results in learning not just the task assigned. 

References

Ahrens, S. (2022). How to take smart notes: One simple technique to boost writing, learning and thinking.

Chi, M. T. (2009). Active?constructive?interactive: A conceptual framework for differentiating learning activities. Topics in cognitive science, 1(1), 73-105.

Fiorella, L., & Mayer, R. E. (2016). Eight ways to promote generative learning. Educational Psychology Review, 28(4), 717-741.

Roscoe, R. D., & Chi, M. T. H. (2007b). Understanding tutor learning: Knowledge-building and knowledge-telling in peer tutors’ explanations and questions. Review of Educational Research, 77, 534–574.

Loading