The Power of Collaboration: Enhancing Your Note-Taking Experience

This post is intended to be the final contribution in my series of posts describing generative activities and classroom applications. My previous contributions identified two hierarchical systems, SOI (selective, organizing, integrative) and ICAP (interactive, constructive, active, passive), proposing more and less powerful activities for influencing learning effectiveness. Both systems propose collaborative activities to be potentially most effective. Several of my posts have concerned how taking notes can improve achievement so I decided to conclude this series with a focus on collaborative notetaking.

Before I address the topic of collaboration, it may be helpful to provide a more general background on how educational psychologists and researchers such as me describe the process of taking notes. First, we differentiate the overall process into a storage and a retrieval phase. I assume this is obvious. A learner takes notes at one time to improve performance of some type at a later time. Second, we identify what might be accomplished during each stage. What is recorded during the storage phase determines what is available during the retrieval (study) phase. Learners may differ in how completely and how effectively they record key ideas so both completeness and quality of what is recorded could be important. The idea of a generative activity also proposes that the process of taking notes (whether available for review or not) might be helpful because of the cognitive activities that are involved. By extension, an instructor could prepare a quality set of notes and give them to students so they don’t have to take notes themselves. It matters if having personally taken notes is key to effectiveness. So attempts to determine if taking notes yourself has some unique value are useful.

Again, the importance of a retrieval and a study phase probably seems obvious. But again, there are important wrinkles that could be important. Does it matter if you review your own notes in comparison to expert notes? When in the time period between taking notes and the attempt to use knowledge should notes be reviewed? How many times and in what ways should this external record be used for review?

How might collaboration impact these processes? Some of the ways in which collaboration might modify notetaking are generative and some not. Collaboration could mean that others record notes you miss or record some things more accurately than you and access to their notes would allow you to achieve a more complete and a more accurate representation of the content. Maybe you just miss some things or misunderstand some things. When you have help, maybe you can record less and think more during the reception phase reducing the working memory demands of taking notes. These factors could be important if you don’t “slack off” knowing that you have some way to augment your own optimal efforts. These advantages are not generative. Collaboration could also involve actual interaction. Learners could discuss their understanding in reviewing their composite notes adding additional processing to what individuals might do on their own. This is what generative notetaking really proposes.

There are lots of other variations in notetaking that might be important and could be beneficial or harmful. There are postprocessing variations other than talking through notes with other students. Some systems (e.g., Cornell notes) propose a system of postprocessing?—?a secondary process of commenting on notes. Other ways of working with notes taken (Smart notes) also can be applied as part of the retrieval/study stage.

Another interesting proposal challenges the way we tend to think about taking in information during a live lecture. With asynchronous presentations that were increasingly common during the pandemic and also a way to think about the advantages of a flipped classroom, content is experienced in a recorded format. A learner or a small group of learners can control the pace of the presentation by simply stopping the playback of a video or even repeating segments of a recording reducing the working memory and note creation challenges of keeping up. With recorded content, a small group of students can even discuss as they record notes making the process more generative.

I have several motives in presenting notetaking in this way. First, I wanted those who think the processes are simple and fixed to think again. Second, I wanted to set you up for arguing that while determining if collaboration helps or not is pretty straightforward, understanding why what is observed in a dependent variable is not obvious. For example, if collaboration improves achievement, does this happen because the combination of notes is more complete and accurate or because the process of students working together led to some unique processing that would not have occurred without the interaction. Some have even observed that collaboration led to better quiz performance, but poorer implementation of the skills being taught (Fanguy, et al. 2021). These authors argued that the processing required of individual learners varied as a function of whether they had to depend entirely on their own notes. Deep understanding required for application might suffer when responsibility was shared.

I have concluded based on a review of most of the studies on collaborative notetaking that teasing apart the potential benefits does not presently allow clear conclusions. The core problem is that it is difficult to document how much actual interaction occurs and what are the characteristics of such interactions. Fanguy, et al. (2023) offer some interesting suggestions for how interaction might be operationalized, but few studies have included such data. So while studies do demonstrate the positive impact of collaborative notes (e.g. Baldwin, et al. 2019), the mechanisms responsible are unclear.

One additional factor is likely quite significant. Group comparisons between individual and collaborative notetaking ignore the individual nature of contributions within the collaborative groups (Fanguy, et al., 2023). No matter the nature of the inputs, we all learn as individuals and without a mechanism for identifying the type and extent of individual involvement, group comparisons will always be somewhat deficient. Even if group differences can be demonstrated, some within a group may benefit and some may not. The typical ending for many research articles?—?more research is needed?—?clearly applies to this topic.

One final point, I can and will suggest several digital collaborative tools for those of you who are interested, but I also caution that it is important to understand the purpose and hence perhaps the the strategies of notetaking that are to be recommended. As an academic, I studied student notetaking as would be applied to improve performance on future examinations. In my own work as an academic, I was and continue to be interested in the way I can take notes myself. There are several important differences in these circumstances. A student needs to understand the priorities of the course and instructor as would be relevant to an upcoming examination or writing project to take the most useful notes. Complete notes when requirements are unknown would seem a reasonable goal. My own goals are more self-imposed, but also are to record information that would potentially be useful over a much longer span of time. Capturing what seem to be important ideas in a form that will make sense to me several years in the future seems a different task.

Recommendations:

Google docs?—?collaborative notetaking may work with tools already familiar to educators. Multiple studies I have reviewed were conducted by assigning small groups of students (say 4–5) to a common Google doc file.

Hypothes.is?—?Hypothesis is a free tool that has been around for a while and is increasingly integrated into many LMSs used in higher ed. The tool is flexible allowing annotations and highlights to be publicly shared or shared with a designated group.

Glasp?—?Glasp is a recent entry to this category and is the tool I use for my own work. I like the tool because it is flexible in ways similar to Hypothesis and allows me to export the content I generate for long-term use in other Personal Knowledge Management (PKM) systems.

References:

Baldwin Matthew, P., Mik, F., & Costley Jamie, H. (2019). The effects of collaborative note-taking in flipped learning contexts. Journal of Language and Education, (4), 20.

Fanguy, M., Baldwin, M., Shmeleva, E., Lee, K., & Costley, J. (2021). How collaboration influences the effect of note-taking on writing performance and recall of contents. Interactive Learning Environments, 1–15.

Fanguy, M., Costley, J., Courtney, M., & Lee, K. (2023). Analyzing collaborative note-taking behaviors and their relationship with student learning through the collaborative encoding-storage paradigm. Interactive Learning Environments, 1–15.

Loading

Note-taking as a generative activity

When explaining it helps to have examples both for personal understanding and for communication. My more recent interest in long-term notes has provided a useful example that relates well to my long/term interest in generative activities. This specific collection of note collection activities is convenient because the activities are similar yet illustrate important differences. Notetaking is also an activity most have applied and comments on variations in how the activity can be applied are relatable contributing to my efforts to communicate. My more general goal is to help educators understand the purpose behind the assignments or study suggestions they make. 

Generative activities are external tasks learners engage in that encourage productive cognitive behaviors. External tasks to influence thinking activities. Several researchers have identified hierarchies that attempt to explain the benefits of the external tasks and differentiate the less and more powerful activities.

Two examples of hierarchies include the proposals of Chi (2009) and Fiorella and Mayer (2016)

Chi (2009) proposed the SOI framework – selective, organizing, and interactive.

Fiorella and Mayer (2016) proposed a similar ICAP framework (reversed here to show the parallels with Chi) – passive, active, constructive, interactive.

Some further clarification may be necessary. Selective seems self-explanatory. When reading selective is the active process of identifying important material. Constructive, when applied to taking notes, has a specific meaning. It implies the integration of new information with what one already knows. For example, thinking of an example (something you already know) associated with a concept or principle just learned creates a new representation. The learner is putting things together or finding applications. Interactive as defined here is a social process. It could relate to processes such as might be involved in cooperative learning. Both parties or even a larger group combine their individual understandings to create a superior composite.

I am relating these hierarchies to note-taking activities as might be explained by Aherns (2022). This author described notetaking in a little different way than might be assumed to apply in a school or college setting. I like to think of it as taking notes for the long term. This might describe the purpose I have for taking notes. I am not taking notes for an exam in a couple of weeks or at the end of the semester. I am not taking notes to write a paper for my instructor. I am engaging in reading for purposes that might be realized in a few years. I want my notes to be useful when in the future I have a need for the information I understood when the note was created, but may not be remembered when that information would be valuable. 

I am extending Aherns a bit here, but a sequence based on his writing might include the following:

  • Reading
  • Highlighting/ fleeting notes
  • Smart note
  • Collaborative note

Here are some clarifications of these terms. Reading (or listening) is the lowest stage and involves the exposure to information. Fleeting notes involve the recording of information with little elaboration. Students tend to take this type of notes while listening to a lecture possibly because they must get the information down while the lecturer continues to speak. Highlighting is similar in that it involves selection with little additional processing. Smart notes is Ahern’s term for notes that I remember him describing as providing sufficient context that a note would make sense to me in the future. In other words, this type of note must stand alone as a useful resource. Such notes would also be understandable by others with reasonable background knowledge.

It is important to recognize that learner engagement in generative activities involves potential rather than guaranteed benefits. Roscoe and Chi offer an interesting way of describing potential. They were writing about peer teaching as a generative activity, but the distinction they identify makes sense when applied to other activities. Their distinction is between knowledge telling and knowledge building. If learners are asked to explain a concept to a peer or summarize a concept as a note, they can repeat what they heard or read or they can interpret what they have heard or read in generating an output. Similarly, learners can merge their notes with a peer or they can compare and contrast their notes resulting in deeper processing of the content.

Because most generative activities involve the production of a product, educators can review these products from time to time to evaluate how active learners are being in thinking about what they are learning.

Insights

A few additional comments to consider as a summary. These ideas are interesting and quite concrete. In addition, the analyses are realistic in recognizing that positive results are not automatic.

First, what may seem to be a similar activity may have different consequences as a function of the kind of thinking applied

Second, it is what the student does in completing a generative task that results in learning not just the task assigned. 

References

Ahrens, S. (2022). How to take smart notes: One simple technique to boost writing, learning and thinking.

Chi, M. T. (2009). Active?constructive?interactive: A conceptual framework for differentiating learning activities. Topics in cognitive science, 1(1), 73-105.

Fiorella, L., & Mayer, R. E. (2016). Eight ways to promote generative learning. Educational Psychology Review, 28(4), 717-741.

Roscoe, R. D., & Chi, M. T. H. (2007b). Understanding tutor learning: Knowledge-building and knowledge-telling in peer tutors’ explanations and questions. Review of Educational Research, 77, 534–574.

Loading

Digital for serious reading tasks

I keep encountering colleagues who disagree with me on the value of relying on digital content (e.g., Kindle books, pdfs of journal articles) rather than content they collect on paper. I agree that their large home and office libraries are visually attractive and their stuffed chair with reading lamp looks very inviting. They may even have a highlighter and note cards available to identify and collect important ideas they encounter. A cup of coffee, some quiet music in the background, and they seem to think they are set to be productive.

I have only one of my computers, a large monitor when working at my desk, and a cup of coffee. The advantages I want to promote here are related to my processing of content I access in a digital format. What you can’t see looking at my workspace whether it happens to be located in my home or at a coffee shop is the collection of hundreds of digital books and the hundreds of downloaded pdfs I have collected and can access from any locate when I have an Internet connection. I can work with digital content from my home office without a connection, but I prefer to have a connection to optimize the use of the tools that I apply.

For me, the difference between reading for pleasure and reading for productivity is meaningful. I listen to audiobooks for pleasure. I guess that is a digital approach as well and it functions whether in my home, on a walk, or in the car. For productivity, I read to take in information I think useful to understand my world and to inform my writing about topics mostly related to the educational uses of technology. I think of reading as a process that includes activities intended to make available the ideas that I encounter in what I read and in my reactions to this content in the future. Future uses frequently but not exclusively now involve writing something. At one point when I was a full-time educator I engaged in other additional forms of communication, but in retirement, I mostly write.

My area of professional expertise informs how I work. I studied learning and cognition with an emphasis on individual differences in learning and the topics of notetaking and study behavior. One way to explain my present preoccupations might be to suggest I am now interested in studying and notetaking to accomplish self-defined goals to be pursued over an extended period of time. Instead of preparing to demonstrate what I know about topics assigned to me and with priorities established by someone else with the time span of a week or at most a couple of months, I now pursue general interests of my own preparing to take on tasks I can only describe in vague terms now but tasks that may become quite specific in a year or more. How do I accumulate useful information that I can find and interpret when a specific production goal becomes immediate? The commitment I have made to consume and process digital content is based on these goals and insights.

What follows identifies the tools I presently use, the activities involved as I make use of each tool, and the interconnections among these tools and the artifacts I use each tool to produce.

Step 1 – reading.

In my professional work, I made a distinction between reading and studying. This was more for theoretical and explanatory reasons because most learners do not neatly divide the two activities. Some read a little, reread, and take notes continuously. Some read and then read again assuming I guess that a second reading accomplishes the goals of what I think of as studying. Some read and highlight and review their highlights at a later time. There are many other possibilities. I think of reading as the initial exposure to information much like listening to a lecture is an initial exposure to information. Anything that follows the initial exposure, even if interspersed with other periods of initial exposure, is studying

My tools – Present tools/services related to this stage of processing – Kindle for books and Highlights (Mac app) for PDFs. Other tools are used for content I find online, but most of my actual productive activity focuses on books and journal articles

Step 2 – initial processing (initial studying)

While reading, I use highlighting to identify content I may later find useful and I take notes (annotation as these notes are connected to the book or pdf). Over time, I found it valuable to generate more notes. Unlike the highlights, the notes help me understand why content I found interesting at the time of reading might have future usefulness. 

My tools – Present tools/services related to this stage of processing – Kindle for books and Highlights (Mac app) for PDFs. Yes, these are the same tools I identified in step 1. However, the integration of these dual roles is accurate as both functions are available within the same tools. One additional benefit of reading and annotating using the same tool and applied to the same content is the preservation of context. The digital tools I use can be integrated in ways that allow both forward and backward connections. If at a later stage in the approach I describe I want to reexamine the context in which I identified an idea, I can move between tools in an efficient way.  

Step 3 – delayed processing (delayed studying)

Here I list tools I would use for accepting the highlights and notes output from Step 2 as isolated from the original text. I also include tools I would use for reworking notes to make them more interpretable when isolated from context, adding tags to stored material, adding links to establish connections among elements of information, and initial summaries written based on other stored information. I like a term I picked up from my reading of material related to what has become known as personal knowledge management (PKM). A smart note is a note written with enough information that it will be personally meaningful and would be meaningful to another individual with a reasonable background at a later point in time. 

My tools – Readwise to isolate and review highlights and notes from Kindle. Obsidian to store highlights and notes, add annotations to notes, create links between notes, and generate some note-related summaries an comments. I use several AI extensions within Obsidian to “interact” with my stored content and draft some content. Presently, I use Smart Connections as my go-to AI tool.  I write some more finished pieces in Google Docs. 

Step 4 – sharing

As a retired academic, I no longer am involved in publishing to scientific journals or through textbook companies. My primary outlet for what I write are WordPress blogs I post through server space that I rent (LearningAloud). A cross-post a few of my blog entries to Substack and Medium.  

My tools – I write in Google docs and then copy and paste to upload content to the outlets I use. 

Obsidian as the hub

Here are a couple of images that may help explain the workflow I have described. The images show how Obsidian stores the input from the tools used to isolate highlights and notes from full-text sources.

As notes are added to Obsidian, I organize them into folders. An extension I have added to Obsidian creates an index of the content within each folder, but at some point the volume of content is best explored using search.

Here is what a “smart note” I have created in Obsidian looks like. The idea of a smart note is to capture an idea that would be meaningful at a later date without additional content. Included in this note is a citation for the idea, tags I have established that can be used to find related material and a link.

This is an example of a “note” Obsidian automatically generated based on book notes and highlights sent by Readwise. I can add tags and links to this corpus of material to create connections I think might be useful. The box identifies a link stored with the content that will take me back to Kindle and the location of the note or highlight. These links are useful for recovering the original context in which the note existed. 

Here is a video explaining how my process works.

So, the argument I am making here is that digital tools provide significant advantages not considered in single-function comparisons between paper and screen. Digital is simply more efficient and efficacious for projects that develop over a period of time.

Loading

Applying AI to Discuss Your Own Content

I have moved past the initial stage of awe in connection with access to large language models such as ChatGPT and after considerable exploration have begun to focus on how I might find value in what these systems can provide. I presently use AI tools to support the research I do to inform my writing – blog posts such as this. I have found that I feel uncomfortable trusting a tool like ChatGPT when I simply prompt it to provide me information. There are simply too many situations in which it generates replies that sound good, but are fabrications when checked. 

The one task most trustworthy requires that I focus the AI on a source of content I control and can use to check if something seems off. In this post, I will identify three such tools and explain a little of how you might also find these tools helpful.

ChatPDF

As the name implies, ChatPDF allows a user to interact with the content of a designated PDF. Much of the content I personally review consists of scientific journal articles available to me as PDFs from my university library. This has been the case now for many years and I have a collection of hundreds of such files I have read, highlighted, and annotated. The link I provide above explains how ChatPDF allows me to explore the content of content in such files. Because I read and annotate such files anyway, I actually don’t interact with journal articles in this way very often. The link I have provided describes the use of ChatPDF as a tutor applied to a textbook chapter. The intent of the description was to describe multiple ways in which ChatPDF could benefit a learner trying to understand and store important ideas from a document.

The other two examples here describe AI tools available to allow a user to interact with collections of notes. One tool works with notes saved in Obsidian and the second with notes in Mem.AI. These are digital tools for storing and organizing personal notes and digital content. The tools are designed for the organization and exploration of such notes, but as AI has become available new ways to make use of what can become large collections of information can also be applied. 

Smart Chat Obsidian Plugin

I have prepared a video to offer some idea of how Smart Chat prompts can be applied to the content stored in Obsidian. If you are unfamiliar with Obsidian, the video also offers a glimpse of Obsidian itself. One point I think is important Obsidian and differentiates it from Mem.AI is the way it stores content. Obsidian stores content as individual text files which include content as text and what is called markdown. Markdown is a simple set of tags that allow a user to establish links, tags, and text embellishments such as bolding, size, etc. The benefit is the independence of the files from any specific tool. So, if Obsidian was to go away, you would still have a collection of documents with your information you could salvage. In contrast, Mem.AI stores content in what I think of a database in the cloud. There are ways to export your content, but I find value in knowing I have my content on my computer in a format I can access if necessary.

The Smart Chat plugin requires that you have an Open.Ai account and add some money to cover the cost of your AI activity. I don’t consider the investment that large and have been contributing $5 a month which has covered the cost of my activity.

Mem.AI

This image shows the home screen for Mem.AI. At the top of the screen, you can see the AI prompt window. I pay $10 a month for MEM.AI, but the AI feature is included. The following prompt (same as I used for the Smart Chat plugin in Obsidian) generated the following response. The content of my two note systems is similar, but not completely identical. You see some differences in the content that was generated.

Prompt

List my notes that involve a comparison of taking notes by hand and by using a keyboard. Write a 400 word summary of these notes.

Response

Based on your knowledge base, there are two notes that involve a comparison of taking notes by hand and using a keyboard:

  1. Horbury2021: This study compared the performance of 10 and 11-year-olds taking notes by hand or using a computer. The study found that conceptual understanding was superior when taking notes by hand. The authors speculated that keyboarding may have produced greater cognitive load, especially for children who may have less experience in keyboarding.
  2. Writing a paper step by step: This note mentions a study by Mueller and Oppenheimer (2014) that found no difference in terms of the number of facts students were able to remember whether they took notes by hand or by typing them into their laptops. However, in terms of understanding the content of the lecture, the students who took their notes by hand performed much better.

Here’s a 400-word summary of these notes:

The method of note-taking, whether by hand or keyboard, can significantly impact a student’s understanding and recall of the material. A study by Horbury (2021) compared the performance of 10 and 11-year-olds taking notes by hand or using a computer. The study found that students had a superior conceptual understanding when taking notes by hand. The authors speculated that keyboarding may have produced greater cognitive load, especially for children who may have less experience in keyboarding. This suggests that the physical act of writing might help students process and understand the information better.

On the other hand, a study by Mueller and Oppenheimer (2014) found no difference in terms of the number of facts students were able to remember whether they took notes by hand or by typing them into their laptops. However, in terms of understanding the content of the lecture, the students who took their notes by hand performed much better. This suggests that while the amount of content stored may not significantly differ between handwriting and keyboarding, the process of handwriting might lead to a deeper understanding of the content.

These findings have several implications for educational practices. Given that handwriting seems to lead to a deeper understanding of the content, educators might want to encourage students to take notes by hand, especially during complex lectures or discussions. However, it’s also important to remember that what works best might vary from student to student. Personalization of learning strategies, taking into account individual strengths and preferences, could also be a valuable approach.

In conclusion, while technology has its place in the classroom, these findings suggest it should not completely replace traditional methods. A balance between digital and analog methods could be the key to effective learning. Furthermore, students could benefit from explicit instruction on effective note-taking strategies, such as focusing on understanding over verbatim transcription. The cognitive load of keyboarding for younger students or those less familiar with typing should also be considered when deciding on note-taking methods.

Loading

Sharing my MEMEX content

Social bookmarking is a method of saving, organizing, and sharing web pages or online resources that you find useful or interesting. It allows users to store bookmarks or links to web pages on a social bookmarking website, rather than saving them in their web browser’s bookmarking tool.

The process typically involves creating an account on a social bookmarking site and then adding bookmarks by submitting the URL of a webpage along with a title, description, and relevant tags or keywords. These bookmarks are usually public and can be viewed and accessed by other users of the social bookmarking site.

One of the key features of social bookmarking is the ability to discover and explore content based on the recommendations and interests of other users. Users can browse through popular bookmarks, search for specific topics or tags, and subscribe to the bookmarks of other users whose interests align with their own.

Social bookmarking can be a valuable tool for organizing and managing online resources, as it provides a centralized platform for storing and accessing bookmarks from any device with an internet connection. It also enables collaboration and knowledge sharing, as users can follow each other, comment on bookmarks, and engage in discussions around specific topics.

I use several social bookmarking services and this post concerns MEMEX. This service offers some unique capabilities not available in what I would describe as first-generation services (e.g., Diigo). Memex (Memex garden for desktop and Memex Go for tablet) is really designed for collaboration. Wnat I mean here is that individuals share back and forth with other members of a team. Among the shared features when used in this way is discussion/commenting. I don’t really want things to work that way when sharing with others I don’t know because I don’t want to have to moderate comments. I simply want to make the resources I have generated available.

Memex provides a way for me to create what the service refers to as Spaces that are categories of resources I have created. I can share access that is read only. Others can explore the resources within a space, use AI to generate summaries of the resources to see if further investigation might be useful, and use the link to move to the original source. Memex should allow my personal highlights and annotations to be shared as well, but I would have had to indicate that I wanted each individual highlight or annotation to be public as each was generated. The default is private and my collection is too large to make the thousands of such existing additions public as this point. New additions to this collection will include public annotations,

Here is a page that contains links to the Spaces I have generated to this point. As already stated Memex is really designed for a different model of sharing and sharing read-only content is not the way developers imagined the service being used.

The content within a Space appears as shown below. I have applied the AI summarization tool to generate a summary for the first bookmark (Critical thinking stems ….) filed as part of the space Instructional materials. The idea is that a user would generate summaries of articles that generate interest based on the article titles and then follow up by access the articles that seem useful.

The highlights I generated for a different article are accessed with a different icon and offer a different way to make the decision to access the full article.

In summary, what I hope to provide here is a way to learn something about this social bookmarking tool and to take advantage of the time I have invested in using this system to accumulate online resources I have found useful. Page that links to individual Spaces.

Loading

The AI in Mem AI

I have been using Mem AI as a smart notetaking system and as an alternative to Obsidian. This post demonstrates the present AI capabilities which focus on the content I have added, Mem AI proposes it has differentiated itself from competing products such as Obsidian because the AI capabilities are intended as an alternative to personally generated links among notes.

The summary generated made sense at the beginning and then drifted into other content that did not seem related to the directions I gave.

Here is the summary generated by the app and shared.

Loading

Mem Note Taking

I don’t know if the time has come for specialized note-taking tools for students, but some of the emerging capabilities used in these tools (e.g., AI) point to important future opportunities. My comments on these services in other posts have mostly focused on the long-term advantages of developing a large store of information that can be repeatedly examined to address immediate needs. There is no reason that this capability could not be an opportunity for students of any age, but younger students tend to be more focused on the next assessment challenge. So the adoption of the type of capability I describe here will likely move over time from grad students to college students to secondary students.

The impetus for this post came from a post I read on the Mem site. This post explained how Mem could be used as a note-taking tool for college students. I have been a Mem user for some time and thought I would create a post on this same topic. A couple of points first. I use the Mem X version which costs me $8 a month for the annual plan. I made this investment because I was interested in exploring the AI capabilities. There is a free version without this capability and reduced prices for students. It makes sense to start with the free version before going all in.

It occurred to me that students may be hesitant to trust an online service that is unfamiliar for their notes. I think it far more likely students would lose a notebook than lose access to their online notes. Students who take notes using a more familiar application can easily continue to do so and then copy and paste their notes into Mem. Mem does offer input and export capabilities so there is no permanent commitment if having your notes locked into a system outside your own computer is a concern.

I have tried to decide how to explain the note-taking method that makes sense for this service in an efficient manner. I am ignoring a description of downloading Mem and an overview of the service and will begin with what to do with a blank note (the create a note button appears in the upper right-hand corner of the following image).

Mem does not rely on a hierarchical storage approach which most tech users might imagine as a hierarchical system of folders. Because the notes taken for a given course needs some efficient way to differentiate the notes for that course, the mechanism I describe in Mem takes advantage of tags. Mem uses what is called markdown to add capabilities to raw text (like the tags in HTML). For tags, the markdown symbol is #. My example is set up for IDT 540 which is a course I teach, so I am using #IDT 540 – 2022 as my tag for the notes for this course. One nice feature of Mem is that it begins to offer suggestions as soon as it can guess what tag you may be entering (this is what you see below). You can enter tags at any location on a Mem “note”. Mem also treats the first text on a note as a label or title so I don’t want the tag at the very top. At the top I enter a title that is appropriate for the notes from a specific date. There is no reason only one note could be generated for a date. It might be more effective to focus on topics covered and differentiate the notes taken on a given day with some addition to the title text.

Here is the other adaptation it is useful to make to a Mem note. A learner will eventually want to “page” through their notes for study. The easiest way to do this is to link notes from adjacent classes. Notes can be found in other ways using search, but this is a handy technique that does not depend on search. Internal links in Mem use + as the markdown indicator for a link. Enter the + and begin entering the title for the preceding or following day’s note and the dates of notes will appear (again this is the anticipation text entry feature) and select the appropriate target or enter the entire title if none appears.

One more markdown technique that may be useful. For external links, the format is [text](URL). So, to link to the online syllabus for this course, I use the Syllabus for the text and the URL for the Google Site for my syllabus.

These three techniques should take care of the basics of taking notes. The screen view while taking notes is shown below. You should be able to identify the title, the link to the syllabus, and the internal link to the other existing note at the end. Other features on the screen include the button to control the sharing of notes and similar notes Mem has found among those I have stored (the system is using information in the present note to find related information in other notes).

The share feature could be useful if the teacher or student peers wanted to share notes. The previous image identified the share button that brings up the following window. Once you have identified other users or teams of users you share by entering the identity of the user or the team. You can also identify a share target using their email address. There are lots of interesting applications for sharing notes and Mem makes sharing easy among users.

This is the Mem home screen. I include it as a reminder that Mem has been designed as a location for all your notes over an extended period of time (i.e., years). Using Mem or a single course during that course would just scratch the surface of the power of this service. A couple of things to note from this image. The tags are displayed in the left-hand column. Most popular tags are visible and there is a link to all tags. The new note button appears in the upper right-hand corner.

Taking notes in this system is easy and requires only a couple of new techniques. The free version is the way to get started. Copying text from another existing note-taking approach (word processing document) would allow students to easily transition to using Mem “live” in their classes.

The link in the first couple of paragraphs to the Mem blog provides some other suggestions.

One more thing. Taking notes often benefits from including images or sketches. Mem note can include images. If the instructor provides access to her lecture slides, you can screen capture the parts of a slide you think would be helpful and then drag the image file onto a Mem note.

Loading