Cornell Notes and Beyond

While a research assistant at Cornell, Walter Pauk was credited with the development of the Cornell Note-taking system. Cornell notes became widely known through Pauk’s popular book “How to study in college” first published in 1962 and available through multiple editions. I checked and Amazon still carries the text.

Pauk’s approach which can be applied within a traditional notebook involves dividing a page into two columns with the right-hand column about twice as wide as the left-hand column and leaving a space across the bottom of each page for writing a summary. The idea is to take notes during a presentation in the right-hand column and later follow-up in the left-hand (often called cue column) with questions and other related comments. This second pass is supposed to follow soon after class so that other memories of the presentation are still fresh. The summary section provides a space to add just what it says – a summary of the main ideas.

Paul explained the proper way to use his system as the five Rs of note-taking. In my experience, the 5 Rs are far less well-known and yet important because they explain how the basic system is to be used. I would organize and explain the 5 Rs as follows.

During class – Record

After class – Reduce

Over time 

Recite (cover notes and see what you can recall based on cues)

Reflect (add your own ideas, extensions)

Review (review all notes each week)

While the Cornell system was designed during a different time and was suited to the technology of the day (paper and pencil), those who promote digital note-taking tools offer suggestions for applying the Cornell structure within the digital environment of the tool they promote. 

Cornell notes within Obsidian 

Cornell notes within Notion 

When I used to lecture about study skills and study behavior, I explained the Cornell system, but I would preface my presentation with the following questions. How many of you have heard of Cornell Notes? The SQ3R system? More had heard of Cornett notes and a few of SQ3R. I would then ask are any of you now using either of these systems to study my presentations or your textbook. In the thousands of students I asked, I don’t remember anyone ever raising her or his hand. To test my approach, I also asked if any student made and study note cards in their classes. The positive responses here were much more frequent. I tried to get a sense of why without much luck. I think my data are accurate and I raise this experience to get you to consider this same question. Students take notes, but don’t have a system.

I think Cornell notes are frequently proposed and taught to younger learners because the design of the note collection environment is simple and easy to describe. I wonder about how the process is communicated and perhaps more importantly implemented. The structure makes less sense if students are only intending to cram rather than frequently review. Does the learner have to “buy in” to the logic or do learners understand the logic, but just are not motivated to put in the effort? How any method is taught and understood likely has at least some impact on whether suggestions are implemented.

Understanding Cornell Notes at a deeper level

Note-taking has always been a personal interest and my posts have frequently commented on note-taking. I may have mentioned Cornell notes in a few of these posts, but my focus tends to be on a more basic level. If I am describing a system, what about specific components of that system have known cognitive benefits to learners? 

I come to the interpretations of those advocating specific study strategies from a cognitive perspective trying to analyze those strategies from this perspective. I ask what about a given study strategy seems like it makes sense given what those who study human cognition have found that benefits learning, retention, and transfer (application). What in a given study strategy could be augmented or given additional emphasis based on principles proposed by cognitive researchers? I will now try to apply this strategy to Cornell notes. I don’t know enough about Pauk’s work to know his theoretical perspective when creating this approach. For the most part, the perspective I take in my analysis has followed Pauk’s work which occurred during the 1950s. Timelines in this regard do not require that research precede practice, but there is a possibility that new research may offer new suggestions,

Topics

My comments will be organized as three topics.

  1. Stages of study behavior – how should the activities intended to benefit learning occur over time. What should be done when?
  1. Generative experiences and a hierarchy of such experiences – My explanation of a generative activity is an external activity intended to encourage a productive cognitive behavior. By hierarchy, I am pointing to research that has attempted to identify more and less effective generative activities and explain what factors are responsible for this ranking.
  1. Retrieval practice / testing effect – Research demonstrates that activities requiring the recall of stored information increases the probably of future recall and also increases understanding. Testing – free recall, cued recall, and recognition tasks – are common, but not the only or necessarily the most effective ways to engage retrieval effort.

Stages of study behavior

My personal interest in note-taking can be traced to the insights of Di Vesta and Gray. These researchers actually differentiated functions – encoding and external storage, but these processes were really centered within the stages of taking notes and then review. Encoding interpreted more broadly can occur at multiple points in time and this is my point in recognizing stages.

Pauk clearly recognized stages of study in proposing that learners function according to the 5Rs. The original notes were to be interpreted, augmented, and reviewed several times between the original recording and the immediate preparation for use. 

Luo and colleagues proposed that notetaking should be imagined as a three-stage process with a revision or update stage recognized after notetaking and before final preparation for use. In addition to recognizing the importance of following up to improve the original record, these researchers advocated for collaboration with a partner. Students do not take complete notes and the opportunity to compare notes taken with others allows for improvements. Research included in the paper points to the percentage of important ideas missed in the notes most record. The authors propose that lectures pause during presentations to provide an opportunity for comparison.

This source describes studies with college students using this pause and update method. Students were given two colored pens so additions could be identified. The pause and improve condition generated a significant achievement advantage (second study). However, this study found no benefit when comparing taking notes with a partner vs alone. Researchers looked at notes added and found few elaborations.

In an even more recent focus on multiple stages as part of a model for building a second brain, Forte described a process called distillation or progressive summarization.  In this process focused on taking notes from written sources, original content is read using an app that allows the exportation of the highlighted material. This content is first bolded and then highlighted to identify key information (progressive distillation). A summary can then be added. The unique advantage in this approach is to keep all of the layers available. One can function at different levels from the same immediate source and backtrack to a more complete level should it become necessary to recall a broader context or to take what was originally created in a different direction. 

It is possible to draw parallels here between what the Cornell system allows and what Forte proposes. The capability of reinstating context and addressing information missing from the original notes is also an advantage of the digital recording of an audio input keyed to specific notes as they are taken (see SoundNote). 

Di Vesta, F. & Gray, S. G. (1972). Listening and note taking. _Journal of Educational Psychology, 63_(1), 8-14.

Forte, T. (2022). Building a second brain: A proven method to organize your digital life and unlock your creative potential. Atria Books.

Luo, L., Kiewra, K. A., & Samuelson, L. (2016). Revising lecture notes: How revision, pauses, and partners affect note taking and achievement. Instructional Science, 44(1), 45-67.

Hierarchy of generative tasks

Again, a generative experience is an external activity intended to encourage productive activities. These productive activities may occur without any external tasks and this would be best situation because there is overhead in implementing the external tasks. However, for many learners and for most under some situations, the external tasks require cognitive activities that may be avoided or remain unrecognized as a function of poor metacognition or lack of motivation.

Many tasks initiated by a learner or educator can function as a generative function. Fiorella and Mayer (2016) have identified a list of eight general categories most educators can probably turn into specific tasks. These categories include:

  • Summarizing
  • Mapping
  • Drawing
  • Imagining
  • Self-Testing
  • Self-Explaining
  • Teaching
  • Enacting

Immediately, summarization can be identified from this list as being included in the Cornell system. Self-testing would also be involved in the way Pauk described recitation.

What I mean by a hierarchy as applied to generative activities is that some activities are typically more effective than others. 

Chi offers a framework – active-constructive-interactive – to differentiate learning activities in terms of observable overt activities and underlying learning processes. Each stage in the framework assumes the integration of the earlier stage and is assumed more productive than the earlier stage.

Active – doing something physical that can be observed. Highlighting would be another example.

Constructive – creating a **product** that extends the input based on **what is already known**. For example, summarization.

Interactive – involves interaction with another person – expert/learner, peers – to produce a product.

One insight from this scheme is that there is a stage beyond what might seem to be the upper limit of the Cornell structure (i.e., summarization). I am tempted to describe this additional level as application or perhaps elaboration. Both terms to me imply using information.  

Chi, M. T. (2009). Active?constructive?interactive: A conceptual framework for differentiating learning activities. Topics in cognitive science, 1(1), 73-105.

Fiorella, L., & Mayer, R. (2016). Eight Ways to Promote Generative Learning. Educational Psychology Review, 28(4), 717-741.

Retrieval Practice

Retrieval practice is a learning technique that involves trying to recall information from memory (see also Roediger & Karpicke). There are several reasons why retrieval practice improves future retrieval, but also understanding. First, it forces learners to actively engage with the material. This helps to create stronger connections between the information and existing knowledge. I think of retrieval as looking externally into memory to try to find something connected to what I am searching to find. This makes sense if you understand memory as a web of connections among ideas. The efforts to find specific information results in the activation and awareness of other information in order to find a connection to what is desired.Exploring retrieval not only increases the strength of connection to the desired information, but also an exploration of potentially related information resulting in new insights. 

Second, retrieval practice provides feedback on what has been learned and what needs more attention. This helps learners to identify areas where they need to improve. 

Retrieval practice is sometimes called the testing effect and asking questions or being asked questions is one way to trigger the search process (e.g., Yang and colleagues), Self testing is an activity embedded in the way Pauk imagines the use of Cornell notes. I am guessing it is also a reason the strategy of making and using flash cards is such a common study strategy. 

There are however other ways to practice retrieval. Yang and colleagues speculate that retrieval practice plays in role in the proven benefits of a learner teaching and preparing to teach. Teaching represents an important link here to the more productive levels of generative learning (see previous section). The previously mentioned hierarchy attributed to Luo and colleagues recognized the value of collaboration in reviewing notes and again the addition of sharing and discussion would represent important extensions of a personal use of any note-taking system. 

 Koh, A. W. L., Lee, S. C., & Lim, S. W. H. (2018). The learning benefits of teaching: A retrieval practice hypothesis. Applied Cognitive Psychology, 32(3), 401-410.

Luo, L., Kiewra, K. A., & Samuelson, L. (2016). Revising lecture notes: How revision, pauses, and partners affect note taking and achievement. Instructional Science, 44(1), 45-67.

Roediger III, H. L., & Karpicke, J. D. (2006). The power of testing memory: Basic research and implications for educational practice. Perspectives on psychological science, 1(3), 181-210.

Yang, C., Luo, L., Vadillo, M. A., Yu, R., & Shanks, D. R. (2021). Testing (quizzing) boosts classroom learning: A systematic and meta-analytic review. Psychological Bulletin, 147(4), 399-435.

Summary – My effort here was an attempt to cross reference what might be described as a learning system (Cornell Note) with mechanisms that might expain why the system has proven value and possibly allow the recognition of similar components present in other study systems. In addition, I have tried to emphasize that the components of a system may not be understood and applied in practice. Collaboration was suggested as a way to extend the Cornell system.

Loading

Trust AI?

I have found that I cannot trust AI for a core role in the type of tasks I do. I am beginning to think about why this is the case because such insights may have value for others. When do I find value in AI and when do I think it would not be prudent to trust AI?

I would describe the goal of my present work or hobby, depending on your perspective, as generating a certain type of blog post. I try to explain certain types of educational practices in ways that might help educators make decisions about their own actions and the actions they encourage in their students. In general, these actions involve learning and the external activities that influence learning. Since I am no longer involved in doing research and collecting data, I attempt to provide these suggestions based on my reading of the professional literature. This literature is messy and nuanced and so are learning situations so there is no end to topics and issues to which this approach can be applied. I do not fear that I or the others who write about instruction and learning will run out of topics. 

A simple request of AI to generate a position on an issue I want to write about is typically not enough. Often a general summary of an issue AI generates only tells me what is a common position on that topic. In many cases, I agree with this position and want to generate a post to explain why. I think I understand why this difference exists. AI works by creating a kind of mush out of the content it has been fed. This mush is created from multiple sources differing in quality which makes such generated content useful for those not wanting to write their own account of that topic. I write a lot and sometimes I wish the process was easier. If the only goal was to explain something that was straightforward and not controversial relying on AI might be a reasonable approach or at least a way to generate a draft.

As I said earlier, educational research and probably applied research in many areas is messy. What I mean by that is that studies of what seems to be the same phenomenon do not produce consistent results. I know this common situation leads some in the “hard” science to belittle fields like psychology as not a real science. My response is that chemists don’t have to worry that the chemicals they mix may not feel like responding in a given way on a given day. The actual issue is that so many phenomena I am interested in are impacted by many variables and a given study can only take so many of these variables into account. Those looking to make summary conclusions often rely on meta-analyses to combine the results of many similar studies to achieve a type of conclusion and this approach seems somewhat similar to what AI accomplishes. Finding a general position glosses over specifics.

Meta-analysis does include some mechanisms that go beyond the basic math involved in combining the statistical results of studies. This approach involves the researchers looking for categories of studies within the general list of studies that identify a specific variable and then quantitatively or logically trying to determine if this unique variable modified the overall result in some way. 

The approach of examining subcategories is getting closer to what I am trying to do. I think it essential when considering an applied issue to review the methodology of the studies that differ and see what variables have been included or ignored. There is not an easy way to do this. It is not what AI does and it is not something humans can do when simply reviewing the abstracts of research. Do the researchers control a variable you as a consumer/practitioner think may matter? I encounter this issue frequently and I admit this experience often occurs because I have a bias that trends in a different direction than what the data and conclusion of a given study may propose. Biases are always important to recognize, but science relies heavily on doubt and testing alternatives is an important part of the process.

For example, I don’t happen to believe that taking notes by hand and reading from paper are necessarily better than their digital equivalents. I have read most of the studies that seem to make this case, but I find little in the studies that would explain why? Without credible answers to the “why” question, I continue to doubt and since I cannot generate data myself, I continue to examine the data and methodologies of specific studies looking for explanations.

Long intro, but I thought it necessary to support the following point. AI is not particularly helpful to me because conclusions reached from a mess or amalgam of content without specific links to sources I can examine seems a digital representation of the problem I have just outlined. AI searches for a common position when the specifics of situations and may create a common position that is misleading.

If you use AI and haven’t tried this, I would ask that you try working backward. By this, I mean ask the AI system to offer sources that it used in responding to your request. Exploring this approach works best when you know the field and have a good handle on what the AI should produce. 

Here is an example I generated recently when trying to understand what factors were responsible for the proposed value of the Cornell note-taking system. Many who read my posts probably recognize this approach to taking notes. What about this system explains why it seems to help students? I was using the AI system Leo which is now available as a tool within the Brave browser. 

The following image shows Leo as a window that opens in a Brave side panel (panel is opened using the icon at the top and Leo is activated by the icon enclosed by the red box on the right). At that point, you can being “chatting” with Leo.

Leo gave me a nice analysis of what the Cornell note-taking system is and offered several possibilities for why the system is effective. I then asked Leo for references in support of the reasons offered for effectiveness which resulted in names and dates of studies and I then asked for full citations. Leo responded with the following list and even indicated that it hoped this information would be helpful.

Here are the full citations for the references I provided earlier:

1. Fisher, R. P. (1993). The Cornell note-taking system: A study of its effectiveness in improving lecture note-taking and recall. Journal of Educational Psychology, 85(2), 278-286.
2. Kiewra, K. A. (1994). The Cornell note-taking system: A review of research on its effectiveness. Journal of Learning Disabilities, 27(3), 171-180.
3. Koech, J. (2013). The effect of the Cornell note-taking system on the academic performance of students with learning disabilities. Journal of Learning Disabilities, 46(2), 148-158.
4. Kornell, N., Son, L. K., & Tai, K. (2007). The importance of retrieval for learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), 576-585.
5. Bjork, E. L., & Bjork, R. A. (1992). A new theory of disuse and an old theory of stimulus decay. In A. Healy & R. Brown (Eds.), The psychology of learning and motivation: Vol. 8. Cognition and practice (pp. 115-145). New York: Academic Press.

I hope these references are helpful for you! Let me know if you have any other questions.

Here is the thing about this list. None of these citations is real. The names are appropriate as researchers who work in this area, the titles make sense, and the journals exist. However, try inserting any title from this list in Google Scholar and you will find there are no matches. I tried the more direct approach of actually going to the journals and looking for the papers. There was nothing to find. AI mushes things together and loses track of specifics. Even the names and titles make sense out of this mush, but the origins of the information cannot be retraced and reviewed.

If I were to offer the summary of my request as a blog post, it would be informative and accurate. If I were to append the citations on which this summary was generated, I would find myself embarrassed as soon as someone decided they wanted to use a citation to learn more. Is there value here? I think so as long as a user understands what they are getting. AI seems to do a reasonable job of presenting a summary of what others have written. However, at least within the scenario I have described, it is important to understand limitations. When I challenged Leo on a specific citation, Leo was willing to explain in its own words that it had just made the citation up. 

I have come to my own strategy for using AI. I use a tool such as Elicit to identify citations that I read creating my own notes. I then use AI tools to offer analysis or summaries of my content and to identify the notes that were used in generating responses. If it references one of my notes, I am more confident I agree with the associated statement.

This post is already far too long, so here is a link to an earlier post describing my use of Obsidian and AI tools I can focus on my own notes. 

Loading

To Win the War, Defeat Hamas and Stop Settlements

I write this post in response to comments made during last evening’s Republican debate during which several participants were very negative in response to the discussions on the Israeli/Palestinian situation occurring on many college campuses. The tone advocated that university officials shut down students voicing their concerns that the military actions of the Israelis were indiscriminately killing a large number of Palestinians innocent of any aggression toward Palestinians and voicing recognition of the abuses the Israelis had visited upon those of other faiths in the West Bank and the region. Of specific concern in these vocalizations has been the complicity of leader Netanyahu in using the support of leaders of Israeli extremists in order to gain political power. I support this concern of the students and see little hope for the region unless the overreach of all extremists in the region are not eliminated.

I think students are idealistic and see the hypocrisy in the positions taken by many politicians. Whether these politicians see their position as pragmatic or not is not the issue for me. Pragmatism can easily become a way to ignore legitimate complexity that is acknowledged by others. You do not have to condone atrocities to understand that people placed in impossible life circumstances are easier to convince they have no choice other than to resort to violence. My point is that the students recognize that simplifying a complex situation to justify a given response is unlikely to have long-term success.

In reacting to the simplicity of the Republican candidates in reacting to the present world situation, I happened to read an NYTimes piece by opinion writer Thomas Friedman. Thomas Friedman is one of the few authors who generates content I find so valuable that I purchase any book he writes. This interest goes back many years. I have found his commentary on globalization, climate, and education very insightful. Before these topics were integrated in what I think of his “World is Flat” books, I read his books about what I have always called the Middle East and I believe this area of the world and his experiences covering issues related to this region established him during his early career. One can find posts on this blog going back many years based on my reading of one Friedman book or another. 

Friedman’s argument seems to me to encapsulate the position of the students and reflects a more nuanced and I would suggest an informed analysis of the crisis. His position seems captured in his title – To Win the War, Defeat Hamas and Stop Settlements [I think this link should work whether or not you have a digital subscription to the NYTimes]. I think of this argument as suggesting that to solve a problem of this nature you need to assure all participants that you are willing to put yourself in the position of taking the moral high ground. The crisis will not go away until there is a legitimate two-state solution and the extremists in Israel recognize and eliminate their abuse and aggression toward others who have legitimate rights to exist in the region. This is not a matter of determining which side has committed the most egregious acts, this is a matter of suggesting that wrongs exist on both sides and conflict will continue and be defended by one side as long as this is the case.

Loading

School and Professional Note-Taking

I have always been interested in note-taking. I explored options for taking notes as a college student and conducted research on note-taking as a professor. Despite the length of time note-taking has been an interest, the combination of the recent reframing of note-taking as Personal Knowledge Management and technology-based tools for making and using notes has brought a critical revelation. There are essential differences between student note-taking and out-of-school note-taking. Maybe that was obvious to everyone else. I don’t think so. 

I have come to think about the distinction in this way. Do the tools, methods, and research of note-taking scale? By this I mean do the research, methods, and tools have been dominated by a way of thinking that imagines a learner listening to a lecture in preparation for a test or reading a book in preparation for writing a paper tell us much about taking notes outside of an educational setting. How does this perspective relate to Professional Note-taking?

I may have been aware of Common Place Books and had a file box full of note cards with citations and a few comments about the research articles I had read (later to be converted to digital tools such as EndNote), but I failed to make the connection that these were note-taking techniques and these were techniques that were very different from what students I was lecturing on note-taking and study skills were doing. 

It took the book Smart Notes, learning about Nicholas Luhmann and his Zettelkasten, and my exploration of multiple digital note-taking tools (e.g., Obsidian, Mem.ai) for me to begin forming a broader perspective on note-taking. I was still a notetaker, but my activities were very different from what students do. I thought maybe the labels of school and adult notetakers might be an appropriate distinction, but I worked mainly with adults so that was not quite right. I decided maybe the distinction between school and professional notes made more sense. Again, my question – Do the tools, methods, and research of note-taking scale?

School and Professional Note Differences

  1. Delay until use. An obvious difference is the expected time until use of stored information. With school notes, the likely use of recorded information is less than a semester. Maybe grad students would review notes before prelims or comprehensive examinations (the exams students take toward the end of their PhD training), but such exams are becoming more and more uncommon and Professional notes would still be used over a longer period of time. For Professional notes, the actual use of such notes could be delayed by years and perhaps decades.
  2. Control of goals – The reality in student note-taking is that you most likely understand your purpose as preparation for a task that will be assigned by someone else. You might select the topic of a paper you are taking notes to write, but an instructor likely determined the parameters of the paper. Exams present an even more vague and externally defined objective. Not only do you not usually get to select the focus of the exam or whether an exam will be experienced, you are seldom informed specifically what in the notes or assigned readings are a priority for what will be covered by the assessment. Such lack of control matters because the uncertainty probably means more complete notes should be a goal. In a lecture situation, you can work through priorities and likely foci after a lecture, but the speed of presentation may mean that the best “live situation” strategy is to record as much as you can. It is true that the intended use for Professional Notes is often uncertain at the time you record information, but the difference is a matter of degree. Things that have no interest to you can be ignored without anxiety.

The differences I have outlined here are how I see reality. However, I do wonder when one should begin taking Professional Notes. I wish I had some of the notes from my 50 years ago college years. There is also learning that goes on outside of formal education at all ages and it seems recording insights related to such experiences would be of value. I suppose those who keep a diary have some goal like this in mind.

As my perspective on taking notes has become more expansive, I am starting to think that issues such as control and time frame have implications for tools, strategies, and research related to taking notes.

Tools

I have two general comments on the selection of tools. These comments can be differentiated as a) how important is digital technology in taking notes and b) when digital tools are the answer, which tools.

First, should notes be handwritten or recorded digitally using a keyboard. Yes, I know there are ways to transform handwritten notes (on paper or screen) into digital, but I see this approach as on the fringe. My answer here recognizes that the time frame / control of application issues must be part of the answer. For me, the answer is simple – go digital. If you are a fan of some of the research on student use of pen vs. keyboard and are convinced by the data from the studies showing pen and paper are superior – fine. This is not the place for me to argue and explain. 

OK, I can’t help myself. If you favor pen/paper, read the methodology of those studies carefully. When was the exam in the research comparison given? More complete notes (what tends to result from keyboards) offer little advantage offer no advantage if exams are immediate and retention over time is less important. What experience do learners have taking notes on a laptop? An important limitation in both notetaking and reading comparisons of paper vs screen is the experience the participants in the studies have with extended use of technology as notetakers or readers.

I think there are obvious advantages of technology that should not be ignored. The comprehensiveness of the notes and the ability to record important information are great predictors of evaluations related to this information. For those who are supporters of the “too much typing limits thinking argument”, I would propose that students use a digital tool that records the audio of the input while the student takes notes. SoundNote makes a good example, but there are several tools of this type. Here is what happens. Notes taken are time-stamped to locations in the audio recording (you don’t see the time stamps). When something in the notes confuses you later, click within your notes and listen to the recording at that point. Very efficient. If you don’t understand, enter something like ???? in your notes and review the audio when you are out of the classroom and can take the time. You cannot do these things with paper.

Summary – for school notes, I would recommend digital notes as soon students can manage. Like any approach to taking notes, there are useful strategies that take advantage of what a tool offers.

Professional Notes and tools  – I think Professional Notes benefit from more sophisticated tools and probably the utilization of different tools over time. This combination probably means that the pass-through of content from tool to tool is an issue to consider. A second and related issue is that Professional Notes benefit from some “slicing and dicing” over time. By this, I mean important ideas and concepts can be isolated and then combined and recombined (or at least linked in multiple ways) over time. Part of this process is based on efficient ways to find these ideas.

My personal approach at this time follows. At this time is meaningful in the context of Professional Notes as things change with the advancement of technology and the ability to efficiently migrate content from one tool to a different tool performing similar function or expanded functions is important. I use ReadWise (and its related tool Reader) for ebooks, Notion for web content, and Highlights for pdfs (mostly journal articles) to take notes. I migrate the notes and highlights to Obsidian directly. I also enter individual notes (Smart Notes) directly into Obsidian or code the notes and highlights migrated from the digital note-taking tools with tags and links. I am starting to get into strategies here so I will stop with this description. This sounds complicated, but a) much of this happens automatically or b) can be accomplished by copy and paste. 

Strategies

In 1972, DiVesta and Gray proposed what might be described as the classic model of note-taking describing the stages of encoding and external storage. Encoding in this case implied more than a passive transcription of information and proposed generative activities as a benefit of taking notes. I write a lot about generative activities, but here generative might simply be accepted that learners benefit from the cognitive activities in taking notes. From a research perspective, this would be demonstrated by comparing the recall or other measure of understanding of a group taking notes and another group just listening with neither group reviewing notes before attempting the test of understanding.

Kiewra and colleagues recognized that encoding was too vague and proposed that the process of taking notes could result from qualitative or quantitative benefits. More notes would require paying attention more successfully which would be a quantitative benefit. If there was a benefit to taking notes that involved the thinking that was generated in doing so, this would be a qualitative benefit. Einstein and colleagues proposed there was some evidence of a qualitative benefit based on data comparing better and poorer students because better students recalled more of content defined as more important with little difference in the recall of less important information. Some thinking while listening had to be going on to differentiate the attention paid to the more important ideas.

In general, research does show that what happens while taking the original notes is not as important as what follows. This effect is one reason I am in favor of a system that provides a way to capture more rather than fewer notes. With more notes, you have more to work with and what a learner does with this content is where the more significant benefits are produced. 

What makes sense to me is to conceptualize note use within a three-stage model. Rather than just understanding taking notes as recording and reviewing effective notetaking might benefit from an intermediate stage – revision. For example, Luo and colleagues investigated revision during pauses in a presentation or for the same amount of time immediately after the presentation and found benefits for more immediate activities working with notes. In thinking about taking notes in terms of activities during three phases that might be described as recording, revision, and review, what was done during revision and review without the time constraints of recording information in real-time during a lecture offers opportunities for cognitive activities that benefit retention and understanding.

Translating this notion of stages into a form that might be familiar to more folks who read my post. Consider the Cornell Note Method (see image below). The tools here are typically paper and pen with pages of paper divided into the three sections shown in the image (Notes, Other, and Summary). 

With a blank page divided as I have illustrated, a learner takes notes within the area I have identified as notes. I would describe this as the recording phase. During the revision stage (not a label Pauk would use in explaining his Cornell Note system, but I will use to remain consistent), the learner follows up to react to these notes with questions, insights, issues, etc. that are recorded in the Other section of the page and generates a summary that is added in the section set aside for summary. These additions are generated in reaction to the notes and represent external actions that research has shown encourage useful cognitive activities. These are not activities that would be part of a cramming before an examination study session. Cramming has entirely the wrong connotation for any part of the study process, but I use it here because it is understood and to identify the final phase of preparation before an examination. The process following the initial recording of information assumes a series of returns to the original notes first to post-process the notes to layer on external elements such as questions, comments, and a summary and then to review this combination ideally multiple times.

The Cornell system is a structured tool to some extent because use of the system assumes specific activities will follow the taking of the notes and the tool provides a structure within which these activities record an artifact of these activities. 

Tools for Professional Notes – The combination of tools I use in my own process do not structure a sequence of activities and products as concretely as the Cornell system I have described, but I do have a workflow that has some similarities, but also results in different experiences and different products. In response to the greater time delay before application and the uncertainty of how stored information will be applied result in some important differences in activity. The idea of a Second Brain is often used by those focused on Personal Knowledge Management. 

A second brain is a system or tool that helps you to collect, organize, and retrieve information. The goal of a second brain is to help you access information more easily, understand the information you have accessed, and apply this information in creative ways. Often, the best approach is to separate ideas from their original context, store important ideas with a newly created context sufficient to make the concept understandable after a significant delay, create a system of metadata that will facilitate rediscovery of these ideas after a significant delay, and offer ways to flexibly connect ideas to creatively produce new insights and products. Tags, links, and powerful search options are important for exploration and rediscovery. Like the revision and review phases I identified in my discussion of School notes, tools for Professional Notes are intended both to be explored on a regular basis (to discover new relationships and revisit ideas looking for new connections) and to use when there is a specific task to complete. 

Research

School and Professional Notes have very different research bases. School notetaking and notetaking strategies have been investigated with both laboratory and applied research techniques for years. This research has allowed the development of theoretical models explaining how learning from taking notes happens and what specific strategies seem to work best for which students. As is often the case with applied research in education, the research is probably best described as messy with inconsistent findings possibly related to many different sources of potential variability (learner characteristics, task characteristics, content differences).

The interest in Professional Notes has generated a rich literature on strategies with a very limited literature summarizing studies evaluating effectiveness. I wonder if this will change. The tools and strategies change quickly and data collection would be very difficult because the tools are used in circumstances that would make it difficult to collect data from controlled experiments. In this area, arguments are based more a battle of ideas than a battle of data. 

Sources

Di Vesta, F. & Gray, S. G. (1972). Listening and note taking. Journal of Educational Psychology, 63(1), 8-14.

Einstein, G. O., Morris, J., & Smith, S. (1985). Note-taking, individual differences, and memory for lecture information. Journal of Educational Psychology, 77(5), 522-532.

Kiewra, K. A., Mayer, R. E., Christensen, M., Kim, S., & Risch, N. (1991). Effects of repetition on recall and note-taking: Strategies for learning from lectures. Journal of Educational Psychology, 83(1), 120-123.

Luo, L., Kiewra, K. A., & Samuelson, L. (2016). Revising lecture notes: how revision, pauses, and partners affect note taking and achievement. Instructional Science, 44(1), 45-67.

Loading

Patagonia

I haven’t posted in a while and it will be a while until I post again. I did not want people to think I had abandoned my blog. We are on an expidition cruise ship exploring Patagonia.

I have a separate blog for our travels and if you are interested I would invite you to take a look. My wife and I are heavy tech users no matter the activities we are engaged in and you may find things you will enjoy.

The following is the Pios XI glacier in Chile and the video shows the glacier calving.

Loading

Why is tutoring effective?

We know that tutoring is one of the most successful educational interventions with meta-analyses demonstrating the advantage to be between .3 and 2.3 standard deviations. In some ways, the explanation of this advantage seems obvious as it provides personal attention that cannot be matched in a classroom. The challenges in applying tutoring more generally are the cost and availability of personnel. One of my immediate interests in the AI tools that are now available is in exploring how students might make use of these tools as a tutor. This is different from the long-term interest of others in intelligent tutoring systems designed to personalize learning. The advantage of the new AI tools is that these tools are not designed to support specific lessons and can be applied as needed. I assume AI large language chatbots and intelligent tutoring will eventually merge, but I am interested in what students and educators can explore now?

My initial proposal for the new AI tools was to take what I knew about effective study behavior and know about the capabilities of AI chatbots and suggest some specific things a student might do with AI tools to make studying more productive and efficient. Some of my ideas were demonstrated in an earlier post. I would still suggest interested students try some of these suggestions. However, I wondered if an effort to understand what good tutors do could offer some additional suggestions to improve efficiency and move beyond what I had suggested based on what is known about effective study strategies. Tutors seem to function differently from study buddies. I assumed there must be research literature based on studies of effective tutors and what it is that these individuals do that less effective tutors do not. Perhaps I could identify some specifics a learner could coax from an AI chatbot. 

My exploration turned out to be another example of finding that what seems likely is not always the case. There have been many studies of tutor competence (see Chi et al, 2001) and these studies have not revealed simple recommendations for success. Factors such as tutor training or age differences between tutor and learner do not seem to offer much as whatever is offered as advice to tutors and what might be assumed to be gained from experience do not seem to matter a great deal.

Chi and colleagues proposed that efforts to examine what might constitute skilled tutoring begin with a model of tutoring interactions they call a tutoring frame. The steps in a tutoring session were intended to isolate different actions that might make a difference depending on the proficiency with which the actions are implemented.

Steps in the tutoring frame:

(1) Tutor asks an initiating question

(2) Learner provides a preliminary answer 

(3) Tutor gives confirmatory or negative feedback on whether the answer is correct or not

(4) Tutor scaffolds to improve or elaborate the learner’s answer in a successive series of exchanges (taking 5–10 turns)  

(5) Tutor gauges the learner’s understanding of the answer

One way to look at this frame is to compare what is different that a tutor provides from what happens in a regular classroom. While steps 1-3 occur in regular classrooms, tutors would typically apply these steps with much greater frequency. There are approaches classroom teachers could apply to provide these experiences more frequently and effectively (e.g., ask questions and pause before calling on a student, make use of student response systems allowing all students to respond), but whether or not classroom teachers bother is a different issue from whether effective tutors differ from less effective tutors in making use of questions. The greatest interest for researchers seems to be in step 4. What variability exists during this step and are there significant differences in the impact identifiable categories of such actions have that impact learning?

Step 4 involves a back-and-forth between the learner and tutor that goes beyond the tutor declaring the initial response from the learner as correct or incorrect. Both teacher and learner might take the lead during this step. When the tutor controls what unfolds, the sequence that occurs might be described as scaffolded or guided. The tutor might break the task into smaller parts, complete some of the parts for the student (demonstrate), direct the student to attempt a related task, remind the student of something they might not have considered, etc. After any of these actions, the student could respond in some way.

A common research approach might evaluate student understanding before tutoring, identify strategy frequencies and sequence patterns during a tutoring session, evaluate student understanding after tutoring, and see if relationships can be identified between the strategy variables and the amount learned.

As I looked at the research of this type, I happened across a study that applied new AI not to implement tutoring, but to search for patterns within tutor/learner interaction (Lin et al., 2022). The researchers first trained an AI model by feeding examples of different categories identified within tutoring sessions and then attempted to see what could be discovered about the relationship of categories within new sessions. While potentially a useful methodology, the approach was not adequate to account for differences in student achievement. A one-sentence summary from that study follows; 

More importantly, we demonstrated that the actions taken by students and tutors during a tutorial process could not adequately predict student performance and should be considered together with other relevant factors (e.g., the informativeness of the utterances)

Chi and colleagues (2001)

Chi and colleagues offer an interesting observation they sought to investigate. They proposed that researchers might be assuming that the success of tutoring is somehow based on differences in the actions of the tutors and look for explanations in narratives based on this assumption. This would make some sense if the intent was to train or select tutors. 

However, they propose that other perspectives should be examined and suggest the  effectiveness of tutoring experiences is largely determined by some combination of the following:

  1. the ability of the tutor to choose ideal strategies for specific situations. (Tutor-Centered) 
  2. the degree to which the learner engages in generative cognitive activities during tutoring in contrast to the more passive, receptive activities of the classroom (Learner-Centered), and
  3. the joint efforts of the tutor and learner. (Interactive)

In differentiating these categories, the researchers proposed that in the learner-centered and interactive labels, the tutor will have enabled an effective learning environment to the extent that the learner asks questions, summarizes, explains, and answers questions (learner-centered) or interactively as the learner is encouraged to interact by speculating, exploring, continuing to generate ideas (interactive).

These researchers attempted to test this three-component model in two experiments. In the first, the verbalizations of tutoring sessions were coded for these three categories and related to learning gains. In the second experiment, the researchers asked tutors to minimize tutor-centered activities (giving explanations, providing feedback, adding additional information) and instead to invite more dialog – what is going on here, can you explain this in your own words, do you have any other ideas, can you connect this with anything else you read, etc. The idea was to compare learning gains with tutoring sessions from the first study in which the tutor took a more direct role in instruction. 

In the first experiment, the researchers found evidence for the impact of all three categories of tutor session benefits, but codes for learner-centered and interactive had benefits for performance outcomes relying on deeper learning. The second experiment found equal or greater benefits for learner-centered and interactive events when tutor-focused events were minimized.

The researchers argued that tutoring research that focuses on what tutors do may have yet to find much regarding what tutors should or not do may be disappointing because the focus should be on what learners do during tutoring sessions. Again, tutoring is portrayed as a follow-up to classroom experiences so the effectiveness of experiences during tutoring sessions should be interpreted given what else is needed in this situation. 

A couple of related comments. Other studies have reached similar conclusions. For example, Lepper and Woolverton (2002) concluded that tutors are most successful when they “draw as much as possible from the students” rather than focus on explaining. The advocacy of these researchers for a “Socratic approach” is very similar to what Chi labeled as interactive. 

One of my earlier posts on generative learning offered examples of generative activities and proposed a hierarchy of effectiveness among these activities. At the top of this hierarchy were activities involving interaction.  

Using an AI chatbot as a tutor:

After my effort to read a small portion of the research on effective tutors, I am more enthusiastic about the application of readily available AI tools to the content to be learned. My post which I presented more as a way to study with such tools, could also be argued as a way for a learner to take greater control of a learner/AItutor session. In the examples I provided, I showed how the AI agent could be asked to summarize, explain at a different level, and quiz the learner over the content a learner was studying. Are such inputs possibly more effective when a learner asks for them? There is a danger that a learner does not recognize what topics require attention, but an AI agent can be asked questions with or without designating a focus. In addition, the learner can explain a concept and ask whether his/her understanding was accurate. AI chats focused on designated content offer students a responsive rather than a controlling tutor. Whether or not AI tutors are a reasonable use of learner time, studies such as Chi, et al. and Lepper et al. suggest that more explanations may not be what students need most. Learners need opportunities that encourage their thinking.

References

Chi, M. T., Siler, S. A., Jeong, H., Yamauchi, T., & Hausmann, R. G. (2001). Learning from human tutoring. Cognitive science, 25(4), 471-533.

Fiorella, L., & Mayer, R. (2016). Eight Ways to Promote Generative Learning. Educational Psychology Review, 28(4), 717-741.

Lepper, M. R., & Woolverton, M. (2002). The wisdom of practice: Lessons learned from the study of highly effective tutors. In Improving academic achievement (pp. 135-158). Academic Press.

Lin, J., Singh, S., Sha, L., Tan, W., Lang, D., Gaševi?, D., & Chen, G. (2022). Is it a good move? Mining effective tutoring strategies from human–to–human tutorial dialogues. Future Generation Computer Systems, 127, 194-207.

Loading

Tags and stories in my first and second brains

First and second brain are terms used by those proposing strategies for learning, remembering, and applying that take advantage of external storage tools and techniques. In this descriptive system, your first brain consists of the biological organ in your body and the cognitive activities you can apply within this biological system. This combination of organ and cognitive activity accomplishes what we typically describe as remembering, thinking, and creativity. The concept of a second brain is a way of referencing external devices and activities generating some type of external representations that are intended to augment first brain functions. I purposively have made the generation of an external record a component in my description of a second brain recognizing that external activities that many might describe as study techniques exist that do not involve the generation of an external record. For example, responding to questions is proven as a way to improve retrieval and if done verbally does not involve the creation of anything permanent. Advocates of the second brain concept do emphasize the generation of a record of experiences.

I tend to equate references to the second brain with some system for taking notes. This is a simplification, but a way to quickly provide a reference for those not steeped in this topic. As I have tried to argue when referring to first brain topics, it is more than just the record that is important. It is also the variety of tactics in storage and retrieval and deciding when a given tactic should be applied that can be important.

Finally, first and second-brain proposals can and should include consideration of the interaction between these two systems. As potential users of both brains, we have some control of each system and access to a second brain implementation could change the way we make optimal use of our first brain in comparison to what might be optimal use if we had to rely on the first brain system only. 

We all or at least most of us took notes in our high school and college classes. Taking this background as a starting point, you should have a context within which to think about this topic. Now add some additional expectations. What if the goal was not to use a second brain application to prepare for next week’s exam or the paper you had to write in a couple of weeks? What if the goal was to augment your first brain function over several years in order to address life tasks you might not be even able to describe at this time? Even this later question might be applied to formal education because very few were thinking in this way when studying for that next exam or preparing for that next paper. Most of us probably cannot even find or did not keep the second brain artifacts we created while engaged in our formal education. 

Now this was a long introduction I hope was valuable in and of itself to some. Many of my previous posts concerned second-brain topics such as note-taking and second-brain technology tools. Please take a look if my introductory comments piqued your interest. I spent the time to generate this overview in order to provide a context for the content that now follows.

The application of tags in first and second brains

One of the interesting characteristics of the work of cognitive scientists and second-brain developers is how there seems to be a reciprocal impact of ideas that originate in one field on the other. While I am at it, I can see a similar reciprocity in the ideas of cognitive and AI researchers. To be clear, cognitive researchers rely on hypothetical concepts to represent yet-to-be-discovered biological functions. This is my way of thinking about the challenges of neuroscientists and cognitive researchers. Obviously, mental activity must be a function of biology, but our mastery of this field is far from being useful in addressing most human learning challenges. A hypothetical construct is a proposed mechanism for how something works that has yet to be explainable via a physical equivalent. So cognitive constructs such as short-term memory, metacognition, associative networks, links, etc. seem to be useful in understanding and even proposing effective learning strategies and this is possible without having to reference or consider the underlying biological mechanisms that must be involved. For example, we can measure short-term memory and we can propose ways to improve the effectiveness of short term without reference to actual biological structure or process. My focus in this post is on the role played by tags in both first and second brains

Shank and his focus on stories

I have been rereading Roger Shank’s Tell Me a Story. I first read the book probably 30 years ago. How I now relate to this book on human cognition and AI has changed a great deal because of my recent exposure to personal knowledge management (PKM). As the full book title indicates, Tell me a story: Narrative and intelligence is about stories serving a far different role than entertainment. Shank presents stories as playing a central role in how we think, learn, and communicate. Shank goes as far as suggesting that telling a useful story at the right time is a great sign of intelligence. He proposes that an expert is an individual who has a great number of stories relevant to a given area and has these stories indexed so that he/she can tell a useful story at the right time. He recommends that we recognize that our conversations with others often focus on stories with one individual telling a story and then the other person telling a related story to indicate he or she understands and to offer some additional element of information.

This proposal fits with my own way of thinking about human memory. In cognitive psychology, one way to describe the contents of long-term memory is to propose that meaning is retained in units of information connected by links. This web is different in each individual as differences exist in what units are stored and in how these units are linked. Explaining in detail what cognitive researchers mean by units of information can get pretty dense, but for the present purpose perhaps concepts and facts is close enough. This web is called semantic memory. In addition to the elements of meaning are episodic memories. These episodes are often described as the way we remember events and I always thought we could think of these events as stories. What I heard in class today is an episode with a progression of information. It might also be described as a story.

Some key ideas from Shank’s book:

Intelligence is an abstraction; different experts explain it and sometimes propose how it can be assessed differently. Shank argued that an individual’s use of stories could reveal a lot about how intelligent that person is. Two aspects were informative. The first is having stories worth telling and the second is being aware of which story would be effective when conveyed to a specific individual in a specific situation.

Reminding is using an input in a way that involves the prediction and generalization allowing the retrieval of relevant stored stories. Intelligence is reflected in that capacity to translate new experiences, perhaps stories told by someone else, into effective retrieval cues.

In the process of understanding, we compare experiences with what we have already experienced. This process of reminding is the basis for gaining new insights from differences between similar stories.

Thinking involves indexing. Shank proposed that a useful memory combines specific experiences and indices or labels. The more indices the better. Shank spent a great deal of effort identifying what indices people used proposing that locations, attitudes, challenges, decisions, conclusions, and other labels are used as indices.

We are not necessarily aware of the process of labeling. The application of labels can be assumed based on what individuals recall in response to an input (story/experience). A story that is recalled in response to a story told must share at least one common index.

Understanding is equivalent to the extraction of indices from an input that match the indices associated with stored stories. We learn when the identification of a match between new and old allows further analysis of differences in the stories.

Tags, links, and indices

Careful attention to Shank’s explanation of the value and role of stories is recognition that it is not the stories alone that are important, but the combination of indices and stories. The combination is important, but in addition, it is personalized through the imposition of an indexing approach that creates this productive system. Perhaps thinking about experiences searching for understanding translated as indexing.

So Shank’s importance relies on the combination of indices and stories. Cognitive researchers describe long-term memory in terms of units of information (semantic memory) and episodes linked to facilitate retrieval and understanding.  

Those developing and implementing second-brain systems offer tools (e.g., Obsidian, Mem.ai, LoqSeq) offer a digital system for storing notes, for attaching tags to notes, and for linking notes to each other. Notes are not stored as extended documents as might be the case for the handwritten notes taken during a lecture, but as individual ideas or concepts and labeled with multiple tags and one or many connections to other notes. Users are encouraged to review their notes and their system of connections periodically and to add more connections that occur to them. The goal is value over the long term.

Idea for practice

Aside from reflecting on the commonalities across these systems and how the functioning of one system might encourage how another system might be understood, here is one observation that occurred to me while completing this analysis. I don’t think the second brain advocates take advantage of the power Shank sees in how our use of the first brain relies on stories. Perhaps there is some attention to identifying and connecting examples, but I see little attention paid to the storage, tagging, and linking of stories. I told stories as examples when I lectured. In the time I have spent developing my second brain, I don’t remember ever adding and linking one of the stories I tell and I have not documented in my notes the stories I have read as examples in the sources I might translate into notes. If Shank’s argument for the value of stories is valid, not including stories in a second brain would be an opportunity missed.

Reference

Shank, R. C. (1990). Tell me a story: Narrative and intelligence. _Evanston, IL: Northwestern University Process_.

Loading