This post allows me to integrate my interest in studying, layering, questions, and using AI as a tutor. I propose a specific use of EdPuzzle, a tool for adding (layering) questions and notes to videos, be used as a study tool. EdPuzzle has a new AI feature that allows for the generation and insertion of open-ended and multiple-choice questions. So an educator interested in preparing videos students might watch to prepare for class could prepare a 15 minute mini-lecture and then use EdPuzzle to layer questions on this video and assign the combination of video and questions to students to be viewed before class. Great idea.
The AI capability was added to make the development and inclusion of questions less effortful. Or, the capability could be used to add some questions that educators could embellish with questions of their own. I propose a related, but different approach I think has unique value.
How about instead of preparing questions for students, allow students to use the AI generation tool to add and answer themselves or with peers.
Here is where some of my other interests come into play. When you can interact with AI that can be focused on assigned content you are to learn, you are using AI as a tutor. Questions are a part of the tutoring process.
What about studying? Questions have multiple benefits in encouraging productive cognitive behaviors. There is such a thing as a prequestioning effect. Attempting to answer questions before you encounter related material is a way to activate existing knowledge. What do you already know? Maybe you cannot answer many of the questions, but just trying makes you think of what you already know and this activated knowledge improves understanding as you then process assigned material. Postquestions are a great check on understanding (improving metacognition and directing additional study) and attempting to answer questions involves retrieval practice sometimes called the testing effect. For most learners, searching your memory for information has been proven to improve memory and understanding beyond what just studying external information (e.g., your notes) accomplishes.
I have described EdPuzzle previously, here are some additional comments about the use of the generative question tool.
After you have uploaded a video to EdPuzzle. You should encounter the opportunity to edit. You use edit to crop the video and to add notes and questions. The spots to initiate editing and adding questions are shown in the following images. When using AI to add questions, you use Teacher Assist – Add Questions.
After selecting Add Questions, you will be given the option of adding Open ended or Multiple Choice questions. My experience has been that unless your video includes a good deal of narration, the AI will generate more Open Ended than Multiple Choice questions. If you want to emphasize MC questions, you always have the option of adding questions manually.
Responding to a question will look like what you see in the following image. Playing the video will take the student to the point in the video where a question has been inserted and then stop to wait for a response.
When an incorrect response is generated to a MC question, the error will be identified.
EdPuzzle allows layered videos to be assigned to classes/students.
Anyone can explore EdPuzzle and create a few video lessons at no cost. The pricing structure for other categories of use can be found at the EdPuzzle site.
One side note: I used a video I created fitting the potential scenario I described of an educator preparing content for student use. However, I had loaded this video to YouTube. I found it difficult to download this video and finally resorted to the use of ClipGrab. I am unclear why I had this problem and I understand that “taking” video from some sources can be regarded as a violation of copyright. I know this does not apply in this case, but I did not want to mention this issue.
References:
Pan, S. C., & Sana, F. (2021). Pretesting versus posttesting: Comparing the pedagogical benefits of errorful generation and retrieval practice. Journal of Experimental Psychology: Applied, 27(2), 237–257.
Yang, C., Luo, L., Vadillo, M. A., Yu, R., & Shanks, D. R. (2021). Testing (quizzing) boosts classroom learning: A systematic and meta-analytic review. _Psychological Bulletin_, _147_(4), 399-435.
My explorations of AI use to this point have resulted in a focus on two applications – AI as tutor and AI as tool for note exploration. Both uses are based on the ability to focus on information sources I designate rather than allowing the AI service to rely on its own body of information. I see the use of AI to interact with the body of notes I have created as a way to inform my writing. My interest in AI tutoring is more related to imagining how AI could be useful to individual students as they study assigned content.
I have found that I must use different AI services for these different interests. The reason for this differentiation is that two of the most popular services (NotebookLM and OpenAI’s Custom GPTs) limit the number of inputs that can be accessed. I had hoped that I could point these services at a folder of notes (e.g., Obsidian files) and then interact with this body of content. However, both services presently allow only a small number of individual files (10 and perhaps 20) can be designed as source material. This is not about the amount of content as the focus of this post involves using these two services to interact with a single file of 27,000 words. I assume in a year the number of files will be less of an issue.
So, this post will explore the use of AI as a tutor applied to assigned content as a secondary or higher ed student might want to do. In practice, what I describe here would require that a student would have access to a digital version of assigned content not protected in some way. For my explorations, I am using the manuscript of a Kindle book I wrote before the material was converted to a Kindle book. I wanted to work with a multi-chapter source of a length students might be assigned.
NotebookLM is a newly released AI service from Google. The AI prompts can be focused on content that is available in Google drive or uploaded to the service. This service is available at no cost, but it should be understood that this is likely to change when Google is ready to offer a more mature service. Investing time in this service rather than others allows the development of skills and the exploration of potential, but in the long run some costs will be involved.
Once a user opens NotebookLM and creates a notebook (see red box surrounding new notebook), external content to be the focus of user prompts can be added (second image). I linked Notebook to the file I used in preparation for creating a Kindle book. Educators could create a notebook on unprotected content they wanted students to study.
The following image summarizes many essential features used when using NotebookLM. Starting with the right-hand column, the textbox near the bottom (enclosed in a red box) is where prompts are entered. The area above (another red box) provides access to content used by the service in generating the response to a prompt. The large area on the left-hand side displays the context associated with one of the areas referenced with the specific content used highlighted.
Access to a notebook can be shared and this would be the way an educator would provide students access to a notebook prepared for their use. In the image below, you will note the icon (at the top) used to share content, and when this icon is selected, a textbox for entering emails for individuals (or for a class if already prepared) appears.
Once you have subscribed to the monthly payment plan for ChatGPT – 4, accessing the service will bring up a page with the display shown below. The page allows access to ChatGPT and to any custom GPTs you have created. To create a Custom GPT you select Explore and then select Create a GPT. Describing the process of creating a GPT would require more space than I want to use in this post, but the process might best be described as conversational. You basically interact by describing what you are trying to create and you upload external resources if you want prompts to be focused on specific content. Book Mentor is the custom GPT I created for this demonstration.
Once created, a GPT is used very much in the same way a NotebookLM notebook is used. You use the prompt box to interact with the content associated with that GPT.
What follows are some samples of my interactions with the content. You should be able to see the prompt (Why is the word layering used to describe what the designer does to add value to an information source?)
Prompts can generate all kinds of ways of interaction (see a section below that describes what some of these interactions might be). One type I think has value in using AI as a tutor is to have the service ask you a question. An example of this approach is what is displayed in the following two images. The first image describes a request for the service to generate a multiple-choice question about generative activity which I then respond (correctly) and receive feedback. The second image shows the flexibility of the AI. When responding to the question, I thought a couple of the responses could be correct. After I answered the question and received feedback, I then asked about an answer I did not select wondering why this option could not also be considered correct. As you see in the AI reply, the system understands my issue and acknowledges how it might be correct. This seems very impressive to me and demonstrates that the interaction with the AI system allows opportunities that go beyond self-questioning.
Using AI as tutor
I have written previously about the potential of AI services to interact with learners to mimic some of the ways a tutor might work with a learner. I make no claims of equivalence here. I am proposing only that tutors are often not available and an AI system can challenge a learner in many ways that are similar to what a human tutor would do.
This post describes two systems now available that allow learners to work with assigned content that mimics how a tutor might work with a student. Both systems would allow a designer to create a tool focused on specific content that can be shared. ChatGPT custom GPTs require that those using a shared GPT have an active $20 per month account which probably means this approach would not presently be feasible for common application. Google’s Notebooks can be created at no cost to the designer or user, but this will likely change when Google decides the service is beyond the experimental stage. Perhaps the capability will be included in present services designed for educational situations.
While I recognize that cost is a significant issue, my intent here is to propose services that can be explored as proof of concept and those educators interested in AI opportunities might explore future productive classroom applications of AI.
I feel comfortable writing about learning in educational environments. I have reviewed many instructional and learning strategies, read applied studies intended to evaluate the efficacy of these strategies, and read a substantial amount of the basic cognitive research potentially explaining the why of the applied investigations. In a small way, I have contributed to some of this research.
As my life circumstances have changed, I have begun exploring related, but unfamiliar topics. In retirement, I am by definition no longer playing an active role as a salaried educator or researcher. I retain the opportunity to access the scholarly literature as an emeritus faculty member, but I can no longer engage as a researcher. These changes led to a different perspective. I have become more interested in other folks like me who are still interested in learning and how they go about responding to such interests.
As I have contemplated this situation, it has become clear that this situation is not a matter of age. While it was very important for me to constantly learn while I was working, I don’t think I spent much time considering how I should best go about it. There was work to be done and despite my own focus on education, I did little to consider the strategies of my own learning.
I began to think more deeply about self-directed learning, adult learning, or whatever else might be the current way to describe this situation when I began participating in a book club that has as one interest Personal Knowledge Management (PKM) and the technology tools that can be applied when committed to implementing this concept. For those who are unfamiliar with PKM, one way to gain insight would be to read a couple of the self-help books explaining views on this topic and describing techniques argued to be useful in achieving goals consistent with the general idea of Personal Knowledge Management.
There is plenty of specific information available from such books and other online resources regarding how to study topics for understanding and retention. It is easy to locate tutorials for online services and apps to implement these strategies. There seem to be hundreds of posts on Medium, Substack, and YouTube with titles like “My Obsidium Workflow”, “I Switched From OneNote to Notion and Can’t Believe My New Productivity”, and “All of the Notetaking Apps in One Post”. There must be something people want to understand and evaluate here. When i dig deeper there are some logical arguments proposed to justify techniques digital tools enable such as the creation of permanent and atomic notes, linking notes, and progressive summarization and I can sometimes associate these techniques with cognitive concepts I knew such as generative learning, spaced repetition, and retrieval practice.
What I finally decided I was missing was the type of applied research I found readily available when specific study techniques are proposed for classroom use. Learning and studying over time is not really what is studied in K12 and postsecondary education. What students know is studied over time, but not frequently how different methods of study influence the development of skills and knowledge. Differences in what studies can do on the next exam or at the end of a course are typically the focus. This seems different from the goal of evaluating learner-guided activities to develop knowledge and skills over many years.
The time frame is not the only difference. Some of the strategies for school and adult independent note-taking are similar on the surface but different enough to warrant additional research. Note-taking, sometimes even described as note-making to differentiate the processes by advocates of some PKM methods, is a good example. In the Smart Note approach, isolating specific concepts such as individual notes written with enough context to be interpretable over time and then linking these individual notes to other notes by way of multiple links is quite different from how students take and make use of notes. The note-taking tools are different, the goals are different, and the mechanisms of creating and then acting on the written record are different. I want to know if the mechanics of these differences are actually useful. Controlled comparisons would be interesting, but so would studies examining how adults familiar with these approaches make use of what the tools allow over time, if they actually do. Do learners working for their own purposes stick with what the logic proposed for the use of a learning tool or do they modify the ideal approach to something that is simpler and less cognitively demanding? Formal research methods have proven useful in understanding study strategies proposed for classroom-associated use but should be repeated in evaluating self-directed adult learning.
I don’t think much if any of the type of formal research I propose exists. At least, I have not been able to locate this work. Maybe the payoff for such effort just is not there. Maybe there is a lack of grant support to fund academic research, but we academics are still interested in topics that seldom bring funding. There is a payoff available to those who develop tools and services in the form of subscriptions and for those writing self-help books that attract attention in the form of sales.
As I consider what it would take to work on these topics, I can imagine the challenges researchers would face. How would you collect data and how would you assure privacy when the tools used are often associated with work? How would you get individuals to participate in studies? What would individuals be willing to provide if you wanted to evaluate the effectiveness of the technique employed? I at least would hope individuals might be willing to provide information about the tools they used, how long they have used these tools, and how they have used the tools and perhaps changed their patterns of use over time.
Adults continually have learning tasks to keep up with vocational demands and for personal growth. We are told that rapid advancements in so many areas and so many information sources learning and learning to learn using technology would seem of increasing value. Perhaps by explaining my observations I can interest those still involved as active researchers. It is also possible I am missing a body of research that would address my interests. If this is the case, I would welcome suggestions.
I have written multiple posts explaining generative activities and how such external activities encourage productive cognitive behaviors. Some of these posts describe specific classroom applications of individual generative tasks. In this post, I intend to describe how educators can apply some of these generative activities when they assign web content (pages or videos).
In many cases, online content assigned in K12 classrooms was not prepared as instructional content. For example, an article from Scientific American might offer information relevant to a specific standard addressed in sophomore biology. What activities might an instructor add to help learners understand, remember, and possibly apply concepts within this article. For example, a textbook would likely have activities inserted at the end of a chapter, added as boxes within content, or recommended in a teacher’s manual. Instructors often make additions as class assignments. What I am supporting here is similar to what educational researchers have described as adjunct questions. These were originally questions added within instructional texts or attached at the end of such texts. Embedded activities play different roles than even the same activities might play when delayed and isolated from the informative content. At the time of initial exposure, my argument is that there is a difference between information and instructional content and the connection of generative learning activities is a way to make this transition.
A couple of years ago I became interested in a group of online services that were developed to improve the educational value of online content (web pages and videos). I developed my own way of describing what these services were developed to accomplish. Layering seemed a reasonable description because these services could not actually modify the content originally shared by content creators for ethical and legal reasons. What a layering service could do was take the feed from the creator’s service and add elements on top of that content. Elements were additions that could encourage important cognitive behaviors in a learner.
With a layering service, the content a learner encounters is a combination of the content from the content creator and additions layered on this content. Two sources and servers are involved. From the perspective of a designer, a layering service works by accepting the URL for a web page or video from the designer and then allows the designer to add elements that appear within or on top of the content from the designated source. The layering service sends this combination to the learner and this does not change the original document and still downloads the original from the server each time the combination of original and layered content is requested by a user. Ads still appear and the content server still records the download to give the creator credit. The layering service generates a link provided to learners and recreates the composite of content and designer additions each time a learner uses that link.
Questions are my favorite example of an external activity that can be added to encourage a variety of important thinking (internal) behaviors. For example, if you want a learner to link a new concept to everyday experiences the concept is useful in understanding, you might ask the learner to provide examples that show the application of the concept. Many learners may do this without the question, but the question increases the likelihood more learners will work to identify such connections with their existing experiences. Those who think about instruction in this way may describe what they are doing as designing instruction. I offer an extended description of generative activity in a previous post.
Depending on the specific service, the elements that layering services I am aware of include annotations, highlighting, questions, and discussion prompts. Annotations could include additional material such as examples, translations, or instructions. Questions could be open-ended or multiple-choice. A few of these elements could also be added by the learner (highlights and annotations) so elements provided to the designer could be used to encourage specific use of the elements available to students.
My personal interest in promoting layering services is intended to encourage the use of services that allow educators, educational content designers, and learners to work with this content to provide more effective learning resources and more generative learning experiences. In addition, content creators have a right to assume the server used by the content creator will be contacted each time content is requested and inclusions such as ads are included. The expectations of the content creator are not ignored when using a layering service.
I have identified several services that meet my definition of a layering service. Here, I will describe one service focused on web pages and one that focused on video. Other examples can be explored from the page linked above and I assume others exist that I have not identified. Services are constantly being updated, but I have just worked with the two examples I describe here and this information should be current as of the uploading of this post.
Insert Learning
Insert Learning is my best example of the services promoted here. I say this because it offers the most generative options and the generative options are part of an environment allowing an educator to both create multiple lessons, assign these lessons to members of multiple classes, and record data on student completion of some of the types of activity involved in individual lessons.
The following image should give you some idea how this works. Down the left border of the image, you see a menu of icons allowing the designer to select highlight, note, question, and discussion. Highlight and note work as one probably expects. When the icon is selected text can be highlighted by the designer or learner. The note icon adds what appear as Postit notes allowing the inclusion of text, links, images, video, and whatever else works as an embed. The question icon adds questions either multiple choice as appears in the image or open-ended. The discussion icon appears very much like an open-ended question but accumulates and displays responses from multiple learners to a prompt.
As I said, Insert Learning differentiates itself from many of the other services because the layering component is part of a system that allows the assignment of lessons to individual students organized as classes and also collects responses to questions by lesson and student. The following image shows a couple of responses to an open-ended question. I used Insert Learning in a graduate course I taught in Instructional Design. I made use of several of the tools I presented to students even when the most common use would be in K-12. This image shows how responses to questions would appear in the Grade Book. I could assign a score to a response and this score would then be visible to the student submitting a given response.
It has been a few years since I used Insert Learning. When I did, I paid $8 a month. I see the price has now increased to $20 a month or $100 for the year.
EdPuzzle
EdPuzzle is a service for adding questions and notes to videos. It includes a system for adding these elements, assigning these videos to students, and saving student responses to questions. The following images are small to allow them to be inserted in this post. In the following image, the red box on the right allows the selection of the element to be added – MC question, open-ended question, and note. The timeline underneath the video (middle) is also enclosed in a red box. As the designer watches the video, clicking one of these buttons stops the video and allows the selected addition to be included. A dot appears below the timeline to indicate where an element has been added. A learner can either play the video which will stop for a response when one of these inclusions is reached or select one of the dots to respond. The second image shows the dialog box used to add an open-ended question.
In the video I used in this example, I created a demonstration using Python to run LOGO commands and saved the video to YouTube. Again, this was a demonstration used in a graduate edtech course. Early in the video, I showed and explained the LOGO code. The video then showed the result of running this program.
When using EdPuzzle with this video, I inserted a note asking students to take a pencil and sheet of paper to draw what the LOGO program would create. Near the end of the video, I inserted an open-ended question asking that students explain how Papert’s notion of computational understanding would provide a different way of thinking about the traditional definition of circle (i.e., a plane closed figure with points equidistant from a point).
I used the free version of EdPuzzle because I only assigned students to a few examples to experience what the service provided. You can do a lot with this service at no cost. The pro-level price is $13.50 per month. EdPuzzle Pricing
Summary– these two examples demonstrate the use of layering services to add generative activities to a web page and a web video. There are similar services available from other companies that generate similar student experiences. The value in such services is the opportunity to design learning experiences containing activities likely to improve understanding and retention.
While a research assistant at Cornell, Walter Pauk was credited with the development of the Cornell Note-taking system. Cornell notes became widely known through Pauk’s popular book “How to study in college” first published in 1962 and available through multiple editions. I checked and Amazon still carries the text.
Pauk’s approach which can be applied within a traditional notebook involves dividing a page into two columns with the right-hand column about twice as wide as the left-hand column and leaving a space across the bottom of each page for writing a summary. The idea is to take notes during a presentation in the right-hand column and later follow-up in the left-hand (often called cue column) with questions and other related comments. This second pass is supposed to follow soon after class so that other memories of the presentation are still fresh. The summary section provides a space to add just what it says – a summary of the main ideas.
Paul explained the proper way to use his system as the five Rs of note-taking. In my experience, the 5 Rs are far less well-known and yet important because they explain how the basic system is to be used. I would organize and explain the 5 Rs as follows.
During class – Record
After class – Reduce
Over time
Recite (cover notes and see what you can recall based on cues)
Reflect (add your own ideas, extensions)
Review (review all notes each week)
While the Cornell system was designed during a different time and was suited to the technology of the day (paper and pencil), those who promote digital note-taking tools offer suggestions for applying the Cornell structure within the digital environment of the tool they promote.
When I used to lecture about study skills and study behavior, I explained the Cornell system, but I would preface my presentation with the following questions. How many of you have heard of Cornell Notes? The SQ3R system? More had heard of Cornett notes and a few of SQ3R. I would then ask are any of you now using either of these systems to study my presentations or your textbook. In the thousands of students I asked, I don’t remember anyone ever raising her or his hand. To test my approach, I also asked if any student made and study note cards in their classes. The positive responses here were much more frequent. I tried to get a sense of why without much luck. I think my data are accurate and I raise this experience to get you to consider this same question. Students take notes, but don’t have a system.
I think Cornell notes are frequently proposed and taught to younger learners because the design of the note collection environment is simple and easy to describe. I wonder about how the process is communicated and perhaps more importantly implemented. The structure makes less sense if students are only intending to cram rather than frequently review. Does the learner have to “buy in” to the logic or do learners understand the logic, but just are not motivated to put in the effort? How any method is taught and understood likely has at least some impact on whether suggestions are implemented.
Understanding Cornell Notes at a deeper level
Note-taking has always been a personal interest and my posts have frequently commented on note-taking. I may have mentioned Cornell notes in a few of these posts, but my focus tends to be on a more basic level. If I am describing a system, what about specific components of that system have known cognitive benefits to learners?
I come to the interpretations of those advocating specific study strategies from a cognitive perspective trying to analyze those strategies from this perspective. I ask what about a given study strategy seems like it makes sense given what those who study human cognition have found that benefits learning, retention, and transfer (application). What in a given study strategy could be augmented or given additional emphasis based on principles proposed by cognitive researchers? I will now try to apply this strategy to Cornell notes. I don’t know enough about Pauk’s work to know his theoretical perspective when creating this approach. For the most part, the perspective I take in my analysis has followed Pauk’s work which occurred during the 1950s. Timelines in this regard do not require that research precede practice, but there is a possibility that new research may offer new suggestions,
Topics
My comments will be organized as three topics.
Stages of study behavior – how should the activities intended to benefit learning occur over time. What should be done when?
Generative experiences and a hierarchy of such experiences – My explanation of a generative activity is an external activity intended to encourage a productive cognitive behavior. By hierarchy, I am pointing to research that has attempted to identify more and less effective generative activities and explain what factors are responsible for this ranking.
Retrieval practice / testing effect – Research demonstrates that activities requiring the recall of stored information increases the probably of future recall and also increases understanding. Testing – free recall, cued recall, and recognition tasks – are common, but not the only or necessarily the most effective ways to engage retrieval effort.
Stages of study behavior
My personal interest in note-taking can be traced to the insights of Di Vesta and Gray. These researchers actually differentiated functions – encoding and external storage, but these processes were really centered within the stages of taking notes and then review. Encoding interpreted more broadly can occur at multiple points in time and this is my point in recognizing stages.
Pauk clearly recognized stages of study in proposing that learners function according to the 5Rs. The original notes were to be interpreted, augmented, and reviewed several times between the original recording and the immediate preparation for use.
Luo and colleagues proposed that notetaking should be imagined as a three-stage process with a revision or update stage recognized after notetaking and before final preparation for use. In addition to recognizing the importance of following up to improve the original record, these researchers advocated for collaboration with a partner. Students do not take complete notes and the opportunity to compare notes taken with others allows for improvements. Research included in the paper points to the percentage of important ideas missed in the notes most record. The authors propose that lectures pause during presentations to provide an opportunity for comparison.
This source describes studies with college students using this pause and update method. Students were given two colored pens so additions could be identified. The pause and improve condition generated a significant achievement advantage (second study). However, this study found no benefit when comparing taking notes with a partner vs alone. Researchers looked at notes added and found few elaborations.
In an even more recent focus on multiple stages as part of a model for building a second brain, Forte described a process called distillation or progressive summarization. In this process focused on taking notes from written sources, original content is read using an app that allows the exportation of the highlighted material. This content is first bolded and then highlighted to identify key information (progressive distillation). A summary can then be added. The unique advantage in this approach is to keep all of the layers available. One can function at different levels from the same immediate source and backtrack to a more complete level should it become necessary to recall a broader context or to take what was originally created in a different direction.
It is possible to draw parallels here between what the Cornell system allows and what Forte proposes. The capability of reinstating context and addressing information missing from the original notes is also an advantage of the digital recording of an audio input keyed to specific notes as they are taken (see SoundNote).
Di Vesta, F. & Gray, S. G. (1972). Listening and note taking. _Journal of Educational Psychology, 63_(1), 8-14.
Forte, T. (2022). Building a second brain: A proven method to organize your digital life and unlock your creative potential. Atria Books.
Luo, L., Kiewra, K. A., & Samuelson, L. (2016). Revising lecture notes: How revision, pauses, and partners affect note taking and achievement. Instructional Science, 44(1), 45-67.
Hierarchy of generative tasks
Again, a generative experience is an external activity intended to encourage productive activities. These productive activities may occur without any external tasks and this would be best situation because there is overhead in implementing the external tasks. However, for many learners and for most under some situations, the external tasks require cognitive activities that may be avoided or remain unrecognized as a function of poor metacognition or lack of motivation.
Many tasks initiated by a learner or educator can function as a generative function. Fiorella and Mayer (2016) have identified a list of eight general categories most educators can probably turn into specific tasks. These categories include:
Summarizing
Mapping
Drawing
Imagining
Self-Testing
Self-Explaining
Teaching
Enacting
Immediately, summarization can be identified from this list as being included in the Cornell system. Self-testing would also be involved in the way Pauk described recitation.
What I mean by a hierarchy as applied to generative activities is that some activities are typically more effective than others.
Chi offers a framework – active-constructive-interactive – to differentiate learning activities in terms of observable overt activities and underlying learning processes. Each stage in the framework assumes the integration of the earlier stage and is assumed more productive than the earlier stage.
Active – doing something physical that can be observed. Highlighting would be another example.
Constructive – creating a **product** that extends the input based on **what is already known**. For example, summarization.
Interactive – involves interaction with another person – expert/learner, peers – to produce a product.
One insight from this scheme is that there is a stage beyond what might seem to be the upper limit of the Cornell structure (i.e., summarization). I am tempted to describe this additional level as application or perhaps elaboration. Both terms to me imply using information.
Chi, M. T. (2009). Active?constructive?interactive: A conceptual framework for differentiating learning activities. Topics in cognitive science, 1(1), 73-105.
Fiorella, L., & Mayer, R. (2016). Eight Ways to Promote Generative Learning. Educational Psychology Review, 28(4), 717-741.
Retrieval Practice
Retrieval practice is a learning technique that involves trying to recall information from memory (see also Roediger & Karpicke). There are several reasons why retrieval practice improves future retrieval, but also understanding. First, it forces learners to actively engage with the material. This helps to create stronger connections between the information and existing knowledge. I think of retrieval as looking externally into memory to try to find something connected to what I am searching to find. This makes sense if you understand memory as a web of connections among ideas. The efforts to find specific information results in the activation and awareness of other information in order to find a connection to what is desired.Exploring retrieval not only increases the strength of connection to the desired information, but also an exploration of potentially related information resulting in new insights.
Second, retrieval practice provides feedback on what has been learned and what needs more attention. This helps learners to identify areas where they need to improve.
Retrieval practice is sometimes called the testing effect and asking questions or being asked questions is one way to trigger the search process (e.g., Yang and colleagues), Self testing is an activity embedded in the way Pauk imagines the use of Cornell notes. I am guessing it is also a reason the strategy of making and using flash cards is such a common study strategy.
There are however other ways to practice retrieval. Yang and colleagues speculate that retrieval practice plays in role in the proven benefits of a learner teaching and preparing to teach. Teaching represents an important link here to the more productive levels of generative learning (see previous section). The previously mentioned hierarchy attributed to Luo and colleagues recognized the value of collaboration in reviewing notes and again the addition of sharing and discussion would represent important extensions of a personal use of any note-taking system.
Koh, A. W. L., Lee, S. C., & Lim, S. W. H. (2018). The learning benefits of teaching: A retrieval practice hypothesis. Applied Cognitive Psychology, 32(3), 401-410.
Luo, L., Kiewra, K. A., & Samuelson, L. (2016). Revising lecture notes: How revision, pauses, and partners affect note taking and achievement. Instructional Science, 44(1), 45-67.
Roediger III, H. L., & Karpicke, J. D. (2006). The power of testing memory: Basic research and implications for educational practice. Perspectives on psychological science, 1(3), 181-210.
Yang, C., Luo, L., Vadillo, M. A., Yu, R., & Shanks, D. R. (2021). Testing (quizzing) boosts classroom learning: A systematic and meta-analytic review. Psychological Bulletin, 147(4), 399-435.
Summary – My effort here was an attempt to cross reference what might be described as a learning system (Cornell Note) with mechanisms that might expain why the system has proven value and possibly allow the recognition of similar components present in other study systems. In addition, I have tried to emphasize that the components of a system may not be understood and applied in practice. Collaboration was suggested as a way to extend the Cornell system.
First and second brain are terms used by those proposing strategies for learning, remembering, and applying that take advantage of external storage tools and techniques. In this descriptive system, your first brain consists of the biological organ in your body and the cognitive activities you can apply within this biological system. This combination of organ and cognitive activity accomplishes what we typically describe as remembering, thinking, and creativity. The concept of a second brain is a way of referencing external devices and activities generating some type of external representations that are intended to augment first brain functions. I purposively have made the generation of an external record a component in my description of a second brain recognizing that external activities that many might describe as study techniques exist that do not involve the generation of an external record. For example, responding to questions is proven as a way to improve retrieval and if done verbally does not involve the creation of anything permanent. Advocates of the second brain concept do emphasize the generation of a record of experiences.
I tend to equate references to the second brain with some system for taking notes. This is a simplification, but a way to quickly provide a reference for those not steeped in this topic. As I have tried to argue when referring to first brain topics, it is more than just the record that is important. It is also the variety of tactics in storage and retrieval and deciding when a given tactic should be applied that can be important.
Finally, first and second-brain proposals can and should include consideration of the interaction between these two systems. As potential users of both brains, we have some control of each system and access to a second brain implementation could change the way we make optimal use of our first brain in comparison to what might be optimal use if we had to rely on the first brain system only.
We all or at least most of us took notes in our high school and college classes. Taking this background as a starting point, you should have a context within which to think about this topic. Now add some additional expectations. What if the goal was not to use a second brain application to prepare for next week’s exam or the paper you had to write in a couple of weeks? What if the goal was to augment your first brain function over several years in order to address life tasks you might not be even able to describe at this time? Even this later question might be applied to formal education because very few were thinking in this way when studying for that next exam or preparing for that next paper. Most of us probably cannot even find or did not keep the second brain artifacts we created while engaged in our formal education.
Now this was a long introduction I hope was valuable in and of itself to some. Many of my previous posts concerned second-brain topics such as note-taking and second-brain technology tools. Please take a look if my introductory comments piqued your interest. I spent the time to generate this overview in order to provide a context for the content that now follows.
The application of tags in first and second brains
One of the interesting characteristics of the work of cognitive scientists and second-brain developers is how there seems to be a reciprocal impact of ideas that originate in one field on the other. While I am at it, I can see a similar reciprocity in the ideas of cognitive and AI researchers. To be clear, cognitive researchers rely on hypothetical concepts to represent yet-to-be-discovered biological functions. This is my way of thinking about the challenges of neuroscientists and cognitive researchers. Obviously, mental activity must be a function of biology, but our mastery of this field is far from being useful in addressing most human learning challenges. A hypothetical construct is a proposed mechanism for how something works that has yet to be explainable via a physical equivalent. So cognitive constructs such as short-term memory, metacognition, associative networks, links, etc. seem to be useful in understanding and even proposing effective learning strategies and this is possible without having to reference or consider the underlying biological mechanisms that must be involved. For example, we can measure short-term memory and we can propose ways to improve the effectiveness of short term without reference to actual biological structure or process. My focus in this post is on the role played by tags in both first and second brains.
Shank and his focus on stories
I have been rereading Roger Shank’s Tell Me a Story. I first read the book probably 30 years ago. How I now relate to this book on human cognition and AI has changed a great deal because of my recent exposure to personal knowledge management (PKM). As the full book title indicates, Tell me a story: Narrative and intelligence is about stories serving a far different role than entertainment. Shank presents stories as playing a central role in how we think, learn, and communicate. Shank goes as far as suggesting that telling a useful story at the right time is a great sign of intelligence. He proposes that an expert is an individual who has a great number of stories relevant to a given area and has these stories indexed so that he/she can tell a useful story at the right time. He recommends that we recognize that our conversations with others often focus on stories with one individual telling a story and then the other person telling a related story to indicate he or she understands and to offer some additional element of information.
This proposal fits with my own way of thinking about human memory. In cognitive psychology, one way to describe the contents of long-term memory is to propose that meaning is retained in units of information connected by links. This web is different in each individual as differences exist in what units are stored and in how these units are linked. Explaining in detail what cognitive researchers mean by units of information can get pretty dense, but for the present purpose perhaps concepts and facts is close enough. This web is called semantic memory. In addition to the elements of meaning are episodic memories. These episodes are often described as the way we remember events and I always thought we could think of these events as stories. What I heard in class today is an episode with a progression of information. It might also be described as a story.
Some key ideas from Shank’s book:
Intelligence is an abstraction; different experts explain it and sometimes propose how it can be assessed differently. Shank argued that an individual’s use of stories could reveal a lot about how intelligent that person is. Two aspects were informative. The first is having stories worth telling and the second is being aware of which story would be effective when conveyed to a specific individual in a specific situation.
Reminding is using an input in a way that involves the prediction and generalization allowing the retrieval of relevant stored stories. Intelligence is reflected in that capacity to translate new experiences, perhaps stories told by someone else, into effective retrieval cues.
In the process of understanding, we compare experiences with what we have already experienced. This process of reminding is the basis for gaining new insights from differences between similar stories.
Thinking involves indexing. Shank proposed that a useful memory combines specific experiences and indices or labels. The more indices the better. Shank spent a great deal of effort identifying what indices people used proposing that locations, attitudes, challenges, decisions, conclusions, and other labels are used as indices.
We are not necessarily aware of the process of labeling. The application of labels can be assumed based on what individuals recall in response to an input (story/experience). A story that is recalled in response to a story told must share at least one common index.
Understanding is equivalent to the extraction of indices from an input that match the indices associated with stored stories. We learn when the identification of a match between new and old allows further analysis of differences in the stories.
Tags, links, and indices
Careful attention to Shank’s explanation of the value and role of stories is recognition that it is not the stories alone that are important, but the combination of indices and stories. The combination is important, but in addition, it is personalized through the imposition of an indexing approach that creates this productive system. Perhaps thinking about experiences searching for understanding translated as indexing.
So Shank’s importance relies on the combination of indices and stories. Cognitive researchers describe long-term memory in terms of units of information (semantic memory) and episodeslinked to facilitate retrieval and understanding.
Those developing and implementing second-brain systems offer tools (e.g., Obsidian, Mem.ai, LoqSeq) offer a digital system for storing notes, for attaching tags to notes, and for linking notes to each other. Notes are not stored as extended documents as might be the case for the handwritten notes taken during a lecture, but as individual ideas or concepts and labeled with multiple tags and one or many connections to other notes. Users are encouraged to review their notes and their system of connections periodically and to add more connections that occur to them. The goal is value over the long term.
Idea for practice
Aside from reflecting on the commonalities across these systems and how the functioning of one system might encourage how another system might be understood, here is one observation that occurred to me while completing this analysis. I don’t think the second brain advocates take advantage of the power Shank sees in how our use of the first brain relies on stories. Perhaps there is some attention to identifying and connecting examples, but I see little attention paid to the storage, tagging, and linking of stories. I told stories as examples when I lectured. In the time I have spent developing my second brain, I don’t remember ever adding and linking one of the stories I tell and I have not documented in my notes the stories I have read as examples in the sources I might translate into notes. If Shank’s argument for the value of stories is valid, not including stories in a second brain would be an opportunity missed.
Reference
Shank, R. C. (1990). Tell me a story: Narrative and intelligence. _Evanston, IL: Northwestern University Process_.
This post is intended to be the final contribution in my series of posts describing generative activities and classroom applications. My previous contributions identified two hierarchical systems, SOI (selective, organizing, integrative) and ICAP (interactive, constructive, active, passive), proposing more and less powerful activities for influencing learning effectiveness. Both systems propose collaborative activities to be potentially most effective. Several of my posts have concerned how taking notes can improve achievement so I decided to conclude this series with a focus on collaborative notetaking.
Before I address the topic of collaboration, it may be helpful to provide a more general background on how educational psychologists and researchers such as me describe the process of taking notes. First, we differentiate the overall process into a storage and a retrieval phase. I assume this is obvious. A learner takes notes at one time to improve performance of some type at a later time. Second, we identify what might be accomplished during each stage. What is recorded during the storage phase determines what is available during the retrieval (study) phase. Learners may differ in how completely and how effectively they record key ideas so both completeness and quality of what is recorded could be important. The idea of a generative activity also proposes that the process of taking notes (whether available for review or not) might be helpful because of the cognitive activities that are involved. By extension, an instructor could prepare a quality set of notes and give them to students so they don’t have to take notes themselves. It matters if having personally taken notes is key to effectiveness. So attempts to determine if taking notes yourself has some unique value are useful.
Again, the importance of a retrieval and a study phase probably seems obvious. But again, there are important wrinkles that could be important. Does it matter if you review your own notes in comparison to expert notes? When in the time period between taking notes and the attempt to use knowledge should notes be reviewed? How many times and in what ways should this external record be used for review?
How might collaboration impact these processes? Some of the ways in which collaboration might modify notetaking are generative and some not. Collaboration could mean that others record notes you miss or record some things more accurately than you and access to their notes would allow you to achieve a more complete and a more accurate representation of the content. Maybe you just miss some things or misunderstand some things. When you have help, maybe you can record less and think more during the reception phase reducing the working memory demands of taking notes. These factors could be important if you don’t “slack off” knowing that you have some way to augment your own optimal efforts. These advantages are not generative. Collaboration could also involve actual interaction. Learners could discuss their understanding in reviewing their composite notes adding additional processing to what individuals might do on their own. This is what generative notetaking really proposes.
There are lots of other variations in notetaking that might be important and could be beneficial or harmful. There are postprocessing variations other than talking through notes with other students. Some systems (e.g., Cornell notes) propose a system of postprocessing?—?a secondary process of commenting on notes. Other ways of working with notes taken (Smart notes) also can be applied as part of the retrieval/study stage.
Another interesting proposal challenges the way we tend to think about taking in information during a live lecture. With asynchronous presentations that were increasingly common during the pandemic and also a way to think about the advantages of a flipped classroom, content is experienced in a recorded format. A learner or a small group of learners can control the pace of the presentation by simply stopping the playback of a video or even repeating segments of a recording reducing the working memory and note creation challenges of keeping up. With recorded content, a small group of students can even discuss as they record notes making the process more generative.
I have several motives in presenting notetaking in this way. First, I wanted those who think the processes are simple and fixed to think again. Second, I wanted to set you up for arguing that while determining if collaboration helps or not is pretty straightforward, understanding why what is observed in a dependent variable is not obvious. For example, if collaboration improves achievement, does this happen because the combination of notes is more complete and accurate or because the process of students working together led to some unique processing that would not have occurred without the interaction. Some have even observed that collaboration led to better quiz performance, but poorer implementation of the skills being taught (Fanguy, et al. 2021). These authors argued that the processing required of individual learners varied as a function of whether they had to depend entirely on their own notes. Deep understanding required for application might suffer when responsibility was shared.
I have concluded based on a review of most of the studies on collaborative notetaking that teasing apart the potential benefits does not presently allow clear conclusions. The core problem is that it is difficult to document how much actual interaction occurs and what are the characteristics of such interactions. Fanguy, et al. (2023) offer some interesting suggestions for how interaction might be operationalized, but few studies have included such data. So while studies do demonstrate the positive impact of collaborative notes (e.g. Baldwin, et al. 2019), the mechanisms responsible are unclear.
One additional factor is likely quite significant. Group comparisons between individual and collaborative notetaking ignore the individual nature of contributions within the collaborative groups (Fanguy, et al., 2023). No matter the nature of the inputs, we all learn as individuals and without a mechanism for identifying the type and extent of individual involvement, group comparisons will always be somewhat deficient. Even if group differences can be demonstrated, some within a group may benefit and some may not. The typical ending for many research articles?—?more research is needed?—?clearly applies to this topic.
One final point, I can and will suggest several digital collaborative tools for those of you who are interested, but I also caution that it is important to understand the purpose and hence perhaps the the strategies of notetaking that are to be recommended. As an academic, I studied student notetaking as would be applied to improve performance on future examinations. In my own work as an academic, I was and continue to be interested in the way I can take notes myself. There are several important differences in these circumstances. A student needs to understand the priorities of the course and instructor as would be relevant to an upcoming examination or writing project to take the most useful notes. Complete notes when requirements are unknown would seem a reasonable goal. My own goals are more self-imposed, but also are to record information that would potentially be useful over a much longer span of time. Capturing what seem to be important ideas in a form that will make sense to me several years in the future seems a different task.
Recommendations:
Google docs?—?collaborative notetaking may work with tools already familiar to educators. Multiple studies I have reviewed were conducted by assigning small groups of students (say 4–5) to a common Google doc file.
Hypothes.is?—?Hypothesis is a free tool that has been around for a while and is increasingly integrated into many LMSs used in higher ed. The tool is flexible allowing annotations and highlights to be publicly shared or shared with a designated group.
Glasp?—?Glasp is a recent entry to this category and is the tool I use for my own work. I like the tool because it is flexible in ways similar to Hypothesis and allows me to export the content I generate for long-term use in other Personal Knowledge Management (PKM) systems.
References:
Baldwin Matthew, P., Mik, F., & Costley Jamie, H. (2019). The effects of collaborative note-taking in flipped learning contexts. Journal of Language and Education, (4), 20.
Fanguy, M., Baldwin, M., Shmeleva, E., Lee, K., & Costley, J. (2021). How collaboration influences the effect of note-taking on writing performance and recall of contents. Interactive Learning Environments, 1–15.
Fanguy, M., Costley, J., Courtney, M., & Lee, K. (2023). Analyzing collaborative note-taking behaviors and their relationship with student learning through the collaborative encoding-storage paradigm. Interactive Learning Environments, 1–15.
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional
Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
You must be logged in to post a comment.