Why not ask for help? Have the benefits of technology-augmented studying been demonstrated?

I have written posts for Medium for a few months now. It is clear that some of my most popular posts concern note-taking and personal knowledge management. I have a history with the topic of note-taking having conducted research with college students based in my more general background in the cognitive processing of learning. When I most it is often about evaluating specific digital note-taking practices or knowledge management concepts based on basic cognitive principles. What about how learning works justifies a specific practice the self-help authors advocating for smart/atomic notes or second brain recommends.

I asked Dall-E to help come up with an image depicting the type of learning I had in mind. My prompt asked for an image showing an adult using a computer and note-taking to learn a skill that was something they had not studied in school. I decided I needed something specific so I requested an image focused on learning to bake bread.

As I have explained in some of these posts, I think some claims made for digital note-taking lack empirical support in the context to which the self-help writers propose their tactics apply. 

A couple of observations about the framework within which nearly all (maybe all) existing research was conceptualized. The research I am familiar with focuses on learning within a formal educational setting. Whether it be middle school or graduate students, note-taking is largely a practice to deal with information inputs that are determined by others with the goals for the learner being storing, understanding, and applying this information to examinations, projects, and papers assigned by others. The time frame with perhaps the exception of licensing exams or graduate preliminary examinations are weeks and at most a few weeks in length. Proposals such as Ahren’s Smart Notes or Forte’s Second Brain propose unique tactics and imagine the use of notes over an extended period. Implications of these differences do not seem to be tested or at least are not examined directly by existing research. 

The vocabulary of multiple authors proposing new systems and tactics can be an issue by itself. I am trying to understand the difference between smart notes, atomic notes, and permanent notes. For example, Ahrens titles his book Smart Notes, but then describes fleeting notes, literature notes, and permanent notes. There is a process here – fleeting notes can become permanent notes through a personalization process similar to what Forte in this book about the second brain called progressive summarization. I threw in personalization because that is what I call the process of rephrasing and emphasizing based on what the learner knows (again similar to certain properties of progressive summarization). I think I should be able to apply labels if I think my label communicates meaning more clearly. 

What am I looking for? I am searching for research literature that examines tactics used with these digital services as applied to learner-determined goals. Starting from a long-standing and nuanced literature defining cognitive benefits associated with note-taking, note-reviewing, highlighting, basic memory, and application what can be understood about self-directed learning? What basic descriptive data are available on the common use of the various features of the affordances of digital services? What types of notes do users actually create? Do users make use of tags and links when they attempt to use the notes they have created or do they simply search? Are notes reviewed periodically and new connections found as recommended by the self-help gurus? 

I have tried the various tools scholars use to explore the literature (Research Rabbit, Elicit, Google Scholar, Litmaps, etc.) with no luck. All I need is one or two quality studies of the type I have in mind and finding related work should be easy. Before I give up completely and decide advances in this area will proceed by logic and salespersonship, I decided maybe I should just ask for help. Maybe the wisdom of the crowd really exists. If you think you can provide a lead please do so. I am not putting down those who just imagine strategies for learning they think are unique and creative, but at some point I want to see the data. Am I missing something or is there just nothing there? If there is nothing there, why is this the case?

References

Ahrens, S. (2022). _How to take smart notes: One simple technique to boost writing, learning and thinking_. Sönke Ahrens.

Forte, T. (2022). Building a second brain: A proven method to organize your digital life and unlock your creative potential. Atria Books.

Loading

Sharing the exhaust of reading

I had the opportunity yesterday to do a product review of the online note-taking service Mem.ai with a company representative. I make regular use of Obsidian (with the addition of the Smart Connections plugin) and Mem.ai while reading to do the same things – take, organize, and connect notes and then interact with the notes using AI. I do this as a way to explore two popular services so I can write about their similarities and differences.

The rep had sent me set of questions and then we interacted for what turned out to be a substantial amount of time in reaction to these questions. The question that prompted this post was “What modifications would I like to see Mem.ai add in the future?”

Open.ai is a great service and worth the subscription price, but I would guess any user familiar with other products would be aware of some features they wished any one of the services would add. With Mem.ai. I would like to have access to a feature that would be a way to share portions of my note collection with others. Mem has a pricing level for teams and a way to share any given note within the team, but this is not a way to share with other audiences.

To create this post, I decided I would try to describe this interest and how other services approach this goal. I have previously described these services in detail and I have tried to embed links here that will take you to these descriptions. Here, what I have in mind is emphasizing a way for users of note-taking and organization tools to offer parts of their total collection to others and ideally others who have not invested in the same service. For example, a university history professor might have a massive collection of notes and she may find it valuable to share selected notes with students in different classes. Could this be done efficiently without the students having to purchase the same service?

Hypothes.is 

I became personally familiar with the sharing of notes using the free service Hypothes.is. Hypothes.is allows the sharing of notes to designated groups and the sharing of public annotations to other users who happen on the same online source document. Users add a free extension to any one of several different browsers to create personal annotations for personal use or to participate in groups. This is a base-level product with fewer features than my interests require (e.g., linking, AI analysis), but this service is a great application for classroom use. I first wrote about Hypothes.is in 2017. Here is a more recent description (here is a video). 

Diigo

Diigo has also been around for some time and I originally thought of Diigo as a social bookmarking site. I have written a lengthy description of Diigo so I will not describe in detail here. My public Diigo account is still active and available if you want to take a look. There is a limited free version of Diigo and a free version for educators (pricing chart). The version for educators has a few limitations (e.g., the number of pdfs that can be annotated), but should work well if what you want is to share annotations and links to source sites with students. Diigo is beginning to show its age and does not offer newer features found in Personal Knowledge Management systems such as links among notes or direct access to AI.

Obsidian

Technically, Obsidian stores its data on your machine. Great for security, but a challenge if you want to get at your content from a different machine. I make use of Apple’s iCloud which functions as online external storage to get at my content from multiple devices. I know others use DropBox in the same way. I also know that you can share a DropBox folder with others and this would allow others with access to work with your notes, but this is not the way Obsidian is intended to work and there certainly are security issues. I want to offer read-only access to a designated subset of my notes.

Obsidian does offer an approved way to allow others access. Obsidian Publish is an $8-a-month add-on that would do pretty much what I want to do. Given the infrastructure requirements of providing this approach, the price is certainly reasonable and I should just add publish to the list of my subscriptions. As I write this resistance seems futile, but I wonder if there would be much interest. 

Mem.AI

Mem.AI is an online knowledge management system. The price for an individual user is $8.33 a month for the yearly subscription plan (pricing options). There is a team option for a higher price that is designed for collaborative work (see my initial comments). Mem.ai is a great product for personal use but does not offer the public sharing I would like to see. There is a way to share an individual mem (example), but this is not what I am focusing on here.

MEMEX Garden

For those who follow the personal knowledge management space, MEMEX Garden (Memex Go for portable devices) is a service they probably missed. I paid upfront with a promise of a couple of years fee forgiveness, but I think the monthly subscription price is $6 a month for the yearly plan. MEMEX is positioned within that workflow space before a tool such as Obsidian and can be set up to feed highlights and annotations into Obsidian and some other PKM tools. I mention MEMEX here because it has a sharing capability close to what I would like to see included in my perfect product. 

When you take notes or highlight while reading with this tool, the resulting online entry consists of your notes, highlights, tags, and a link to the source. You can also add notes to a theme. A theme can be shared. The image below shows what a theme looks like and another user would experience when making use of a shared theme.  

When someone accesses a shared theme, they can link to the original article, view notes/highlights (first image that follows), or get an AI-generated summary of the article (second image that follows).

The way I imagine this being useful to others is to first construct themes to share. Then, offer the link to these theme to others. Those individuals could scan the titles listed within a theme and then use the AI feature to identify sources they might find useful. Finally, they would access the selected source documents for their detailed reading.

I have generated an example of what this looks like based on several themes I follow. Note: the AI summaries use OpenAI and will hit a limit. The summarization gets shut off when the limit I have set is reached. If you do not see the AI tool and want to give it a try, try a different browser. For example, it shows up for me in Chrome, but not Brave. 

Summary

I get to the end of this post and upon rereading I find that I have mixed two similar potential social services – social bookmarking and whatever Obsidian and Mem.ai are. Both allow the sharing of highlights and notes, but the ideas differentiated from the original content should be different. In Ahern’s book Smart Notes, he proposed that the notes saved in Obsidian or in Luhman’s Zettelkasten be sufficient to be a meaningful representation of an idea on their own. I interpreted this idea as having sufficient information it was not necessary to have the original context to communicate a useful idea. Highlights and margin notes do not meet this standard and are more likely what is produced when using a tool that both presents the original content and accepts the additions of a reader (e.g., Diigo, Hypothes.is, Memex). 

The idea of sharing the ideas generated while reading appeals to me whatever the form the shared information takes. Here, I made an attempt to comment on several services/tools suited to this goal. I use several of these tools and have not found one that matches what I would like to see in a single tool. Perhaps you will find one that fits your interests.

Loading

Evaluating tech tools for adult learning

I feel comfortable writing about learning in educational environments. I have reviewed many instructional and learning strategies, read applied studies intended to evaluate the efficacy of these strategies, and read a substantial amount of the basic cognitive research potentially explaining the why of the applied investigations. In a small way, I have contributed to some of this research. 

As my life circumstances have changed, I have begun exploring related, but unfamiliar topics. In retirement, I am by definition no longer playing an active role as a salaried educator or researcher. I retain the opportunity to access the scholarly literature as an emeritus faculty member, but I can no longer engage as a researcher. These changes led to a different perspective. I have become more interested in other folks like me who are still interested in learning and how they go about responding to such interests. 

As I have contemplated this situation, it has become clear that this situation is not a matter of age. While it was very important for me to constantly learn while I was working, I don’t think I spent much time considering how I should best go about it. There was work to be done and despite my own focus on education, I did little to consider the strategies of my own learning.

I began to think more deeply about self-directed learning, adult learning, or whatever else might be the current way to describe this situation when I began participating in a book club that has as one interest Personal Knowledge Management (PKM) and the technology tools that can be applied when committed to implementing this concept. For those who are unfamiliar with PKM, one way to gain insight would be to read a couple of the self-help books explaining views on this topic and describing techniques argued to be useful in achieving goals consistent with the general idea of Personal Knowledge Management.

Sonke Ahrens How to Take Smart Notes: One Simple Technique to Boost Writing, Learning and Thinking 

Tiago Forte Building a Second Brain: A Proven Method to Organize Your Digital Life and Unlock Your Creative Potential 

There is plenty of specific information available from such books and other online resources regarding how to study topics for understanding and retention. It is easy to locate tutorials for online services and apps to implement these strategies. There seem to be hundreds of posts on Medium, Substack, and YouTube with titles like “My Obsidium Workflow”, “I Switched From OneNote to Notion and Can’t Believe My New Productivity”, and “All of the Notetaking Apps in One Post”. There must be something people want to understand and evaluate here. When i dig deeper there are some logical arguments proposed to justify techniques digital tools enable such as the creation of permanent and atomic notes, linking notes, and progressive summarization and I can sometimes associate these techniques with cognitive concepts I knew such as generative learning, spaced repetition, and retrieval practice. 

What I finally decided I was missing was the type of applied research I found readily available when specific study techniques are proposed for classroom use. Learning and studying over time is not really what is studied in K12 and postsecondary education. What students know is studied over time, but not frequently how different methods of study influence the development of skills and knowledge. Differences in what studies can do on the next exam or at the end of a course are typically the focus. This seems different from the goal of evaluating learner-guided activities to develop knowledge and skills over many years. 

The time frame is not the only difference. Some of the strategies for school and adult independent note-taking are similar on the surface but different enough to warrant additional research. Note-taking, sometimes even described as note-making to differentiate the processes by advocates of some PKM methods, is a good example. In the Smart Note approach, isolating specific concepts such as individual notes written with enough context to be interpretable over time and then linking these individual notes to other notes by way of multiple links is quite different from how students take and make use of notes. The note-taking tools are different, the goals are different, and the mechanisms of creating and then acting on the written record are different. I want to know if the mechanics of these differences are actually useful. Controlled comparisons would be interesting, but so would studies examining how adults familiar with these approaches make use of what the tools allow over time, if they actually do. Do learners working for their own purposes stick with what the logic proposed for the use of a learning tool or do they modify the ideal approach to something that is simpler and less cognitively demanding?  Formal research methods have proven useful in understanding study strategies proposed for classroom-associated use but should be repeated in evaluating self-directed adult learning. 

I don’t think much if any of the type of formal research I propose exists. At least, I have not been able to locate this work. Maybe the payoff for such effort just is not there. Maybe there is a lack of grant support to fund academic research, but we academics are still interested in topics that seldom bring funding. There is a payoff available to those who develop tools and services in the form of subscriptions and for those writing self-help books that attract attention in the form of sales. 

As I consider what it would take to work on these topics, I can imagine the challenges researchers would face. How would you collect data and how would you assure privacy when the tools used are often associated with work? How would you get individuals to participate in studies? What would individuals be willing to provide if you wanted to evaluate the effectiveness of the technique employed? I at least would hope individuals might be willing to provide information about the tools they used, how long they have used these tools, and how they have used the tools and perhaps changed their patterns of use over time. 

Adults continually have learning tasks to keep up with vocational demands and for personal growth. We are told that rapid advancements in so many areas and so many information sources learning and learning to learn using technology would seem of increasing value. Perhaps by explaining my observations I can interest those still involved as active researchers. It is also possible I am missing a body of research that would address my interests. If this is the case, I would welcome suggestions. 

Loading

Turning AI on my content

In reviewing the various ways I might use AI, I am starting to see a pattern. There are uses others are excited about that are not relevant to my life. There are possible uses that are relevant, but I prefer to continue doing these things myself because I either enjoy the activity or feel there is some personal benefit beyond the completion of a given project. Finally, there are some tasks for which AI serves a role that augments my capabilities and improves the quality or quantity of projects I am working on. 

At this time, the most beneficial way I use AI is to engage an AI tool in discussing a body of content I have curated or created as notes and highlights in service of a writing project I have taken on. There are two capabilities here that are important. First, I value the language skills of an AI service, but I want the service to use this capability only as a way to communicate with me about the content I designate. I am not certain I know exactly what this means as it would be similar to saying to an expert with whom I was interacting tell me about these specific sources without adding in ideas from sources I have not asked you to explore. Use your general background, but use this background only as a way to explain what these specific sources are proposing. What I mean is don’t add in stuff to address my prompt that does not exist within the sources I gave you.

Second, if I ask an AI service about the content I have provided, I want the service to be able to identify the source and possibly the specific material within a source that was the basis for a given position taken. Think of this expectation as similar to the expectation one might have in reading a scientific article to which the author provides citations for specific claims made. My desire here is to be able to evaluate such claims myself. I have a concern in simply basing a claim on the language of sources not knowing the methodology responsible for producing data used as a basis for a claim. For serious work, you need to read more than the abstract. Requiring a precise methodology section in research papers is important because the methodology establishes the context responsible for the generation of the data and ultimately the conclusions that are reached. Especially in situations in which I disagree with such conclusions, I often wonder if the methodology applied may explain the differences between my expectations and the conclusions reached by the author. Human behavior is complex and variables that influence behavior are hardly ever completely accounted for in research. Researchers do not really lie with statistics, but they can mislead by broad conclusions they share based on a less-than-perfect research method. There are no perfect research methods hence the constant suggestion that more research is needed. 

Several services approximate the characteristics I am looking for. I will identify three such services. I had hoped to add a fourth, but I intended to subscribe to the new OpenAI applications recently announced, but the $20 a month subscription fee necessary to use these functions was recently suspended so I will have to wait to explore these functions until OpenAI decides to expand the user base. 

The three services I have worked with include NotebookLM, Mem.ai, and Smart Connections with Obisidan. I have written about Mem.ai and Smart Connections in previous posts, so I will use NotebookLM for extended comments and then offer quick examples produced by the other two services.

NotebookLM

NotebookLM recently was made available to me so I have had less experience using this tool than the other two I have included. 

At this time you can create a notebook based on 5 pdfs or 10 text segments. There is a limit to how much content these units of information can total, but the pdfs I used were research articles so this is a lot of content. In the following image, icons for the 5 pdfs appear in the column on the left of the screen. All of the pdfs have been selected for the interaction I intend with the AI tool and a check beside each pdf indicates this is the case. The window for submitting my prompts appears at the bottom of the image.

The second image shows the results from the prompt I have submitted (I will explain my interest in interacting with these pdfs following this description). The response to this query is provided above the prompt window (I will share the text) and below this window you will see that the summary was based on 10 “citations”. Selecting one of these citations brings up the content that now appears in the left-hand column. This window shows the content of the pdf and some summary comments about that document generated by the AI. The AI also proposes additional prompts a user might want to apply to that content. 

The task I asked all three services to address was related to a recent post I wrote describing generative cognitive tasks and comparisons among the impacts of these generative activities. The pdfs were research studies I had reviewed and were the basis for that post. I had detailed familiarity with this content from both reviewing and annotating this material and writing the previous post and I use this approach of first engaging a process without AI to provide a basis for commenting on what the AI provides. The prompt that follows is what I submitted to NotebookLM to see what would be generated. I will use a similar prompt with the other two AI services/

Prompt: Use only my notes, generate a 400 word summary of generative learning activities and include what is known about the relative effectiveness of different activities.

NoteBook response

Generative learning is a type of learning in which students are actively engaged in creating new knowledge by interacting with the material. This is in contrast to passive learning, in which students simply listen to a lecture or read a textbook.

Generative learning activities are designed to encourage students to think critically about the material and to make connections between new information and their existing knowledge.

There is a significant body of research evidence that supports the effectiveness of generative learning activities. A meta-analysis of 500 studies found that generative learning activities resulted in better learning outcomes than traditional, passive learning methods (Coffey et al., 2003).

Some of the most effective generative learning activities include:

  • Summarizing: Students are asked to summarize a text in their own words. This activity helps students to identify the main ideas of the text and to understand the relationships between them.
  • Questioning: Students are asked to generate questions about a text. This activity helps students to think critically about the text and to engage with the material in a deeper way.
  • Discussion: Students are asked to discuss a text with their classmates. This activity helps students to share their understanding of the text and to learn from each other.

The relative effectiveness of different generative learning activities depends on the specific learning goals. For example, summarizing is a good activity for helping students to remember information, while questioning is a good activity for helping students to understand the material in a deeper way.

Generative learning activities can be used in a variety of settings, including K-12 classrooms, higher education, and corporate training. They are a valuable tool for helping students to learn and remember new information in a more effective way.

***

You will note in this material that NoteBook included a reference. This was not one of the pdfs I provided for review so I thought it might have been included in the reference section of one of the pdfs. I asked Notebook to provide a full citation and it generated the following. 

Coffey, J. E., & McDonald, J. (2003). The effects of generative learning activities on student achievement: A meta-analysis. Contemporary Educational Psychology, 28(4), 240-263. doi:10.1016/j.cedpsych.2003.09.001

While this citation looks authentic and has the proper APA format, it is made up. I tried searching Google Scholar and used my library online access to search the location in Contemporary Educational Psychology and no such article exists. Google asks for user feedback and I provided the fake citation in my evaluation. 

***

Mem.AI

My use of Mem.ai and Smart Connections require a little different approach. The content stored in these services results from my exporting notes and highlights from the research articles I read. Both services are directed at my entire collection of notes so this is different from what NotebookLM could access. However, the citations indicated that the output was based on very similar source material.

Prompt: Use only my notes, generate a 400 word summary of generative learning activities and include what is known about the relative effectiveness of different activities.

Mem.ai response

Generative learning is a process where learners actively engage with material, creating new knowledge and connections. This approach involves strategies such as summarization, teaching, self-testing, and self-explaining, which require learners to select and organize relevant information, elaborate on the material based on personal knowledge, and integrate new information with existing knowledge 1^.

Fiorella and Mayer (2016) identified eight strategies that promote generative learning, including summarization, mapping, drawing, imagining, self-testing, self-explaining, teaching, and enacting. These strategies help learners to create a product based on existing knowledge 1^.

Brod (2021) focused on age differences in generative learning strategies and emphasized the importance of producing a meaningful product that goes beyond simple paraphrasing or retelling. For instance, highlighting does not result in new content, but summarization does. Brod’s review suggests that summarizing becomes useful from high school onwards, while testing is beneficial for all ages 2^.

Chi’s (2009) framework differentiates learning activities into active, constructive, and interactive categories. Active engagement with the material can activate existing knowledge and store new input, while constructive activities involve creating a product based on existing knowledge. Interactive activities involve engaging with others to produce a product that integrates external input with personal knowledge 1^.

Fiorella (2023) proposed a new framework of sense-making that distinguishes among three sense-making modes—explaining, visualizing, and enacting—that serve unique and complementary cognitive functions. The explaining mode generalizes knowledge, the visualizing mode organizes knowledge, and the enacting mode simulates knowledge 3^.

In conclusion, generative learning involves actively engaging with the material to create new connections and deeper understanding. The effectiveness of different generative learning activities can vary based on factors such as age and the specific learning context. However, strategies such as summarization, teaching, self-testing, and notetaking with revision and elaboration can promote generative learning and enhance understanding of the material.

Summarize my notes on generative learning Tue 4/18

Brod’s generative Fri 4/14

Fiorellaet2023 Fri 10/13

1^: Summarize my notes on generative learning

2^: Brod’s generative

3^: [Fiorellaet2023](https://mem.ai/m/cqo3CLWb5tkb8syut

At the end of each paragraph in this output, you see a number. The number corresponds to the citation at the bottom. About the three links that take a user to that note, you see the names of the notes. So, this output is carefully linked to sources. I will provide an example of what my notes look like in association with the output from Smart Connections, but each note contains a citation of the article from which I created that note. 

***

Smart Connections (within Obsidian)

Obsidian contains my notes from research articles I have read and also highlights from other sources provided to Obsidian through Readwise. I tell you this again because I do not have a comparison among AI services based on exactly the same base of resources. However, again, you will note similar sources are found. Note also that the prompt is a little different to get Smart Connections to include citations. 

Prompt: Use only my notes, generate a 400 word summary of generative learning activities and include what is known about the relative effectiveness of different activities. Include links to the individual source notes within your summary

Response:

Based on your notes, generative learning involves actively making sense of new information by mentally reorganizing and integrating it with one’s prior knowledge (Fiorella and Mayer, 2016). It is a constructive process that requires learners to select important information, reorganize it, and relate it to what they already know (Fiorellaetal2016). 

Fiorella and Mayer (2016) identified eight strategies that promote generative learning: summarizing, mapping, drawing, imagining, self-testing, self-explaining, teaching, and enacting. Summarizing involves selecting the main ideas, organizing them into a logical structure, and integrating new information with prior knowledge (Fiorellaetal2016). It is more effective for relatively simple concepts and requires training to use effectively (Fiorellaetal2016). 

Mapping and drawing also involve transforming information into different forms of representation (Fiorellaetal2016). These strategies help learners build connections and organize the material (Fiorellaetal2016). 

Self-testing, or retrieval-based learning, requires learners to actively retrieve information from memory without access to the provided materials (Fiorellaetal2016). It strengthens memory and makes it more accessible in the future (EndresHigh). 

Self-explaining involves explaining the content of a lesson to oneself during learning (Fiorellaetal2016). It promotes meaningful learning outcomes when learners engage in reflective knowledge building (Fiorellaetal2016). 

Teaching, on the other hand, involves selecting relevant information, organizing it into a coherent structure, and elaborating on it by incorporating existing knowledge (Fiorellaetal2016). It sets itself apart from other generative strategies by focusing on helping others learn (Fiorellaetal2016). 

Based on the research by Fiorella and Mayer (2016), it is more appropriate to consider each generative strategy as suitable for certain types of learning and learning contexts rather than regarding one strategy as the most effective (Fiorellaetal2016). 

In a study by Koh, Lee, and Lim (2018), the learning benefits of teaching were investigated. The results showed that teaching improved learning outcomes when it involved retrieval practice, but not when learners used a prepared script (Generative > TeachingAsRetrieval). This supports the idea that retrieval practice is an effective generative learning activity. 

Overall, generative learning activities have been shown to be effective in promoting meaningful learning outcomes. However, the effectiveness of each activity may vary depending on the complexity of the material and the training provided to learners. It is important to consider the specific learning goals and contexts when selecting and implementing generative learning strategies (Fiorellaetal2016). 

Based on your notes, here are the individual notes that provide more information on each generative learning activity:

– [[Generate1]]: Provides an overview of generative learning theory and the eight strategies identified by Fiorella and Mayer (2016).

– [[Summarizing]]: Describes the summarizing strategy and its effectiveness in selecting main ideas and creating quality summaries.

– [[Teaching]]: Discusses the goal of teaching and its distinction from other generative strategies.

– [[Self-Testing]]: Explains the self-testing strategy and its role in retrieval-based learning.

– [[Promote generative learning]]: Provides a link to the article by Fiorella and Mayer (2016) that identifies the eight strategies and discusses their effectiveness.

– [[Fiorellaetal2016]]: Summarizes the key points from Fiorella and Mayer’s (2016) article on generative learning strategies.

– [[EndresHigh]]: Discusses the importance of task differences in retrieval practice and the effects of different types of recall tasks.

– [[Yang2021]]: Highlights a meta-analysis on the effectiveness of retrieval practice in classroom learning and raises questions about the mechanism and student perception of its benefits.

***

Note: The output of Smart Connections is in markdown and the terms included in double parentheses are links that connect to the source note. So, if the summary above was opened in an app that would interpret markdown, the text within the double parentheses would appear as a link and the link would take me to a file stored on my computer. The file is named Generate1.

Here is an example of one of the original notes that was identified as source material. 

Generative learning makes sense of new information by reorganizing it and relating it to existing knowledge. This position comes from Wittrock, but is similar to other theorists (Mayer, Piaget). This specific article identified eight learning strategies that promote generative learning and provides a review of research relevant to each strategy.

[[Summarizing]]

Mapping

Drawing

Imagining

[[Self-Testing]]

Self-Explaining

[[Teaching]]

Enacting

The first four strategies (summarizing, mapping, drawing, and imagining) involve changing the input into a different form of representation.

The final four strategies (self-testing, self-explaining, teaching, and answering practice questions) require additional elaboration. 

Fiorella, L., & Mayer, R. E. (2016). Eight ways to promote generative learning. _Educational Psychology Review, 28(4), 717-741.

***

Summary

Keeping in mind my recognition that the AI of the three AI services was applied to slightly different content, I would argue that Smart Connections and Mem.ai are presently more advanced than NotebookLM. Eventually, I assume a user will be able to direct NotebookLM at a folder of files so the volume of content would be identical. Google does acknowledge that Notebook is still in the early stages and access is limited to a limited number of individuals willing to test and provide feedback. The content generated by all of the services was reasonable, but NoteBook did hallucinate a reference. 

My experience in comparing services indicates it is worth trying several in the completion of a given task. I have found it productive to keep both Smart Connections and Mem.ai around as the one I find most useful seems to vary. I do pay to use both services.

Loading

Cornell Notes and Beyond

While a research assistant at Cornell, Walter Pauk was credited with the development of the Cornell Note-taking system. Cornell notes became widely known through Pauk’s popular book “How to study in college” first published in 1962 and available through multiple editions. I checked and Amazon still carries the text.

Pauk’s approach which can be applied within a traditional notebook involves dividing a page into two columns with the right-hand column about twice as wide as the left-hand column and leaving a space across the bottom of each page for writing a summary. The idea is to take notes during a presentation in the right-hand column and later follow-up in the left-hand (often called cue column) with questions and other related comments. This second pass is supposed to follow soon after class so that other memories of the presentation are still fresh. The summary section provides a space to add just what it says – a summary of the main ideas.

Paul explained the proper way to use his system as the five Rs of note-taking. In my experience, the 5 Rs are far less well-known and yet important because they explain how the basic system is to be used. I would organize and explain the 5 Rs as follows.

During class – Record

After class – Reduce

Over time 

Recite (cover notes and see what you can recall based on cues)

Reflect (add your own ideas, extensions)

Review (review all notes each week)

While the Cornell system was designed during a different time and was suited to the technology of the day (paper and pencil), those who promote digital note-taking tools offer suggestions for applying the Cornell structure within the digital environment of the tool they promote. 

Cornell notes within Obsidian 

Cornell notes within Notion 

When I used to lecture about study skills and study behavior, I explained the Cornell system, but I would preface my presentation with the following questions. How many of you have heard of Cornell Notes? The SQ3R system? More had heard of Cornett notes and a few of SQ3R. I would then ask are any of you now using either of these systems to study my presentations or your textbook. In the thousands of students I asked, I don’t remember anyone ever raising her or his hand. To test my approach, I also asked if any student made and study note cards in their classes. The positive responses here were much more frequent. I tried to get a sense of why without much luck. I think my data are accurate and I raise this experience to get you to consider this same question. Students take notes, but don’t have a system.

I think Cornell notes are frequently proposed and taught to younger learners because the design of the note collection environment is simple and easy to describe. I wonder about how the process is communicated and perhaps more importantly implemented. The structure makes less sense if students are only intending to cram rather than frequently review. Does the learner have to “buy in” to the logic or do learners understand the logic, but just are not motivated to put in the effort? How any method is taught and understood likely has at least some impact on whether suggestions are implemented.

Understanding Cornell Notes at a deeper level

Note-taking has always been a personal interest and my posts have frequently commented on note-taking. I may have mentioned Cornell notes in a few of these posts, but my focus tends to be on a more basic level. If I am describing a system, what about specific components of that system have known cognitive benefits to learners? 

I come to the interpretations of those advocating specific study strategies from a cognitive perspective trying to analyze those strategies from this perspective. I ask what about a given study strategy seems like it makes sense given what those who study human cognition have found that benefits learning, retention, and transfer (application). What in a given study strategy could be augmented or given additional emphasis based on principles proposed by cognitive researchers? I will now try to apply this strategy to Cornell notes. I don’t know enough about Pauk’s work to know his theoretical perspective when creating this approach. For the most part, the perspective I take in my analysis has followed Pauk’s work which occurred during the 1950s. Timelines in this regard do not require that research precede practice, but there is a possibility that new research may offer new suggestions,

Topics

My comments will be organized as three topics.

  1. Stages of study behavior – how should the activities intended to benefit learning occur over time. What should be done when?
  1. Generative experiences and a hierarchy of such experiences – My explanation of a generative activity is an external activity intended to encourage a productive cognitive behavior. By hierarchy, I am pointing to research that has attempted to identify more and less effective generative activities and explain what factors are responsible for this ranking.
  1. Retrieval practice / testing effect – Research demonstrates that activities requiring the recall of stored information increases the probably of future recall and also increases understanding. Testing – free recall, cued recall, and recognition tasks – are common, but not the only or necessarily the most effective ways to engage retrieval effort.

Stages of study behavior

My personal interest in note-taking can be traced to the insights of Di Vesta and Gray. These researchers actually differentiated functions – encoding and external storage, but these processes were really centered within the stages of taking notes and then review. Encoding interpreted more broadly can occur at multiple points in time and this is my point in recognizing stages.

Pauk clearly recognized stages of study in proposing that learners function according to the 5Rs. The original notes were to be interpreted, augmented, and reviewed several times between the original recording and the immediate preparation for use. 

Luo and colleagues proposed that notetaking should be imagined as a three-stage process with a revision or update stage recognized after notetaking and before final preparation for use. In addition to recognizing the importance of following up to improve the original record, these researchers advocated for collaboration with a partner. Students do not take complete notes and the opportunity to compare notes taken with others allows for improvements. Research included in the paper points to the percentage of important ideas missed in the notes most record. The authors propose that lectures pause during presentations to provide an opportunity for comparison.

This source describes studies with college students using this pause and update method. Students were given two colored pens so additions could be identified. The pause and improve condition generated a significant achievement advantage (second study). However, this study found no benefit when comparing taking notes with a partner vs alone. Researchers looked at notes added and found few elaborations.

In an even more recent focus on multiple stages as part of a model for building a second brain, Forte described a process called distillation or progressive summarization.  In this process focused on taking notes from written sources, original content is read using an app that allows the exportation of the highlighted material. This content is first bolded and then highlighted to identify key information (progressive distillation). A summary can then be added. The unique advantage in this approach is to keep all of the layers available. One can function at different levels from the same immediate source and backtrack to a more complete level should it become necessary to recall a broader context or to take what was originally created in a different direction. 

It is possible to draw parallels here between what the Cornell system allows and what Forte proposes. The capability of reinstating context and addressing information missing from the original notes is also an advantage of the digital recording of an audio input keyed to specific notes as they are taken (see SoundNote). 

Di Vesta, F. & Gray, S. G. (1972). Listening and note taking. _Journal of Educational Psychology, 63_(1), 8-14.

Forte, T. (2022). Building a second brain: A proven method to organize your digital life and unlock your creative potential. Atria Books.

Luo, L., Kiewra, K. A., & Samuelson, L. (2016). Revising lecture notes: How revision, pauses, and partners affect note taking and achievement. Instructional Science, 44(1), 45-67.

Hierarchy of generative tasks

Again, a generative experience is an external activity intended to encourage productive activities. These productive activities may occur without any external tasks and this would be best situation because there is overhead in implementing the external tasks. However, for many learners and for most under some situations, the external tasks require cognitive activities that may be avoided or remain unrecognized as a function of poor metacognition or lack of motivation.

Many tasks initiated by a learner or educator can function as a generative function. Fiorella and Mayer (2016) have identified a list of eight general categories most educators can probably turn into specific tasks. These categories include:

  • Summarizing
  • Mapping
  • Drawing
  • Imagining
  • Self-Testing
  • Self-Explaining
  • Teaching
  • Enacting

Immediately, summarization can be identified from this list as being included in the Cornell system. Self-testing would also be involved in the way Pauk described recitation.

What I mean by a hierarchy as applied to generative activities is that some activities are typically more effective than others. 

Chi offers a framework – active-constructive-interactive – to differentiate learning activities in terms of observable overt activities and underlying learning processes. Each stage in the framework assumes the integration of the earlier stage and is assumed more productive than the earlier stage.

Active – doing something physical that can be observed. Highlighting would be another example.

Constructive – creating a **product** that extends the input based on **what is already known**. For example, summarization.

Interactive – involves interaction with another person – expert/learner, peers – to produce a product.

One insight from this scheme is that there is a stage beyond what might seem to be the upper limit of the Cornell structure (i.e., summarization). I am tempted to describe this additional level as application or perhaps elaboration. Both terms to me imply using information.  

Chi, M. T. (2009). Active?constructive?interactive: A conceptual framework for differentiating learning activities. Topics in cognitive science, 1(1), 73-105.

Fiorella, L., & Mayer, R. (2016). Eight Ways to Promote Generative Learning. Educational Psychology Review, 28(4), 717-741.

Retrieval Practice

Retrieval practice is a learning technique that involves trying to recall information from memory (see also Roediger & Karpicke). There are several reasons why retrieval practice improves future retrieval, but also understanding. First, it forces learners to actively engage with the material. This helps to create stronger connections between the information and existing knowledge. I think of retrieval as looking externally into memory to try to find something connected to what I am searching to find. This makes sense if you understand memory as a web of connections among ideas. The efforts to find specific information results in the activation and awareness of other information in order to find a connection to what is desired.Exploring retrieval not only increases the strength of connection to the desired information, but also an exploration of potentially related information resulting in new insights. 

Second, retrieval practice provides feedback on what has been learned and what needs more attention. This helps learners to identify areas where they need to improve. 

Retrieval practice is sometimes called the testing effect and asking questions or being asked questions is one way to trigger the search process (e.g., Yang and colleagues), Self testing is an activity embedded in the way Pauk imagines the use of Cornell notes. I am guessing it is also a reason the strategy of making and using flash cards is such a common study strategy. 

There are however other ways to practice retrieval. Yang and colleagues speculate that retrieval practice plays in role in the proven benefits of a learner teaching and preparing to teach. Teaching represents an important link here to the more productive levels of generative learning (see previous section). The previously mentioned hierarchy attributed to Luo and colleagues recognized the value of collaboration in reviewing notes and again the addition of sharing and discussion would represent important extensions of a personal use of any note-taking system. 

 Koh, A. W. L., Lee, S. C., & Lim, S. W. H. (2018). The learning benefits of teaching: A retrieval practice hypothesis. Applied Cognitive Psychology, 32(3), 401-410.

Luo, L., Kiewra, K. A., & Samuelson, L. (2016). Revising lecture notes: How revision, pauses, and partners affect note taking and achievement. Instructional Science, 44(1), 45-67.

Roediger III, H. L., & Karpicke, J. D. (2006). The power of testing memory: Basic research and implications for educational practice. Perspectives on psychological science, 1(3), 181-210.

Yang, C., Luo, L., Vadillo, M. A., Yu, R., & Shanks, D. R. (2021). Testing (quizzing) boosts classroom learning: A systematic and meta-analytic review. Psychological Bulletin, 147(4), 399-435.

Summary – My effort here was an attempt to cross reference what might be described as a learning system (Cornell Note) with mechanisms that might expain why the system has proven value and possibly allow the recognition of similar components present in other study systems. In addition, I have tried to emphasize that the components of a system may not be understood and applied in practice. Collaboration was suggested as a way to extend the Cornell system.

Loading

School and Professional Note-Taking

I have always been interested in note-taking. I explored options for taking notes as a college student and conducted research on note-taking as a professor. Despite the length of time note-taking has been an interest, the combination of the recent reframing of note-taking as Personal Knowledge Management and technology-based tools for making and using notes has brought a critical revelation. There are essential differences between student note-taking and out-of-school note-taking. Maybe that was obvious to everyone else. I don’t think so. 

I have come to think about the distinction in this way. Do the tools, methods, and research of note-taking scale? By this I mean do the research, methods, and tools have been dominated by a way of thinking that imagines a learner listening to a lecture in preparation for a test or reading a book in preparation for writing a paper tell us much about taking notes outside of an educational setting. How does this perspective relate to Professional Note-taking?

I may have been aware of Common Place Books and had a file box full of note cards with citations and a few comments about the research articles I had read (later to be converted to digital tools such as EndNote), but I failed to make the connection that these were note-taking techniques and these were techniques that were very different from what students I was lecturing on note-taking and study skills were doing. 

It took the book Smart Notes, learning about Nicholas Luhmann and his Zettelkasten, and my exploration of multiple digital note-taking tools (e.g., Obsidian, Mem.ai) for me to begin forming a broader perspective on note-taking. I was still a notetaker, but my activities were very different from what students do. I thought maybe the labels of school and adult notetakers might be an appropriate distinction, but I worked mainly with adults so that was not quite right. I decided maybe the distinction between school and professional notes made more sense. Again, my question – Do the tools, methods, and research of note-taking scale?

School and Professional Note Differences

  1. Delay until use. An obvious difference is the expected time until use of stored information. With school notes, the likely use of recorded information is less than a semester. Maybe grad students would review notes before prelims or comprehensive examinations (the exams students take toward the end of their PhD training), but such exams are becoming more and more uncommon and Professional notes would still be used over a longer period of time. For Professional notes, the actual use of such notes could be delayed by years and perhaps decades.
  2. Control of goals – The reality in student note-taking is that you most likely understand your purpose as preparation for a task that will be assigned by someone else. You might select the topic of a paper you are taking notes to write, but an instructor likely determined the parameters of the paper. Exams present an even more vague and externally defined objective. Not only do you not usually get to select the focus of the exam or whether an exam will be experienced, you are seldom informed specifically what in the notes or assigned readings are a priority for what will be covered by the assessment. Such lack of control matters because the uncertainty probably means more complete notes should be a goal. In a lecture situation, you can work through priorities and likely foci after a lecture, but the speed of presentation may mean that the best “live situation” strategy is to record as much as you can. It is true that the intended use for Professional Notes is often uncertain at the time you record information, but the difference is a matter of degree. Things that have no interest to you can be ignored without anxiety.

The differences I have outlined here are how I see reality. However, I do wonder when one should begin taking Professional Notes. I wish I had some of the notes from my 50 years ago college years. There is also learning that goes on outside of formal education at all ages and it seems recording insights related to such experiences would be of value. I suppose those who keep a diary have some goal like this in mind.

As my perspective on taking notes has become more expansive, I am starting to think that issues such as control and time frame have implications for tools, strategies, and research related to taking notes.

Tools

I have two general comments on the selection of tools. These comments can be differentiated as a) how important is digital technology in taking notes and b) when digital tools are the answer, which tools.

First, should notes be handwritten or recorded digitally using a keyboard. Yes, I know there are ways to transform handwritten notes (on paper or screen) into digital, but I see this approach as on the fringe. My answer here recognizes that the time frame / control of application issues must be part of the answer. For me, the answer is simple – go digital. If you are a fan of some of the research on student use of pen vs. keyboard and are convinced by the data from the studies showing pen and paper are superior – fine. This is not the place for me to argue and explain. 

OK, I can’t help myself. If you favor pen/paper, read the methodology of those studies carefully. When was the exam in the research comparison given? More complete notes (what tends to result from keyboards) offer little advantage offer no advantage if exams are immediate and retention over time is less important. What experience do learners have taking notes on a laptop? An important limitation in both notetaking and reading comparisons of paper vs screen is the experience the participants in the studies have with extended use of technology as notetakers or readers.

I think there are obvious advantages of technology that should not be ignored. The comprehensiveness of the notes and the ability to record important information are great predictors of evaluations related to this information. For those who are supporters of the “too much typing limits thinking argument”, I would propose that students use a digital tool that records the audio of the input while the student takes notes. SoundNote makes a good example, but there are several tools of this type. Here is what happens. Notes taken are time-stamped to locations in the audio recording (you don’t see the time stamps). When something in the notes confuses you later, click within your notes and listen to the recording at that point. Very efficient. If you don’t understand, enter something like ???? in your notes and review the audio when you are out of the classroom and can take the time. You cannot do these things with paper.

Summary – for school notes, I would recommend digital notes as soon students can manage. Like any approach to taking notes, there are useful strategies that take advantage of what a tool offers.

Professional Notes and tools  – I think Professional Notes benefit from more sophisticated tools and probably the utilization of different tools over time. This combination probably means that the pass-through of content from tool to tool is an issue to consider. A second and related issue is that Professional Notes benefit from some “slicing and dicing” over time. By this, I mean important ideas and concepts can be isolated and then combined and recombined (or at least linked in multiple ways) over time. Part of this process is based on efficient ways to find these ideas.

My personal approach at this time follows. At this time is meaningful in the context of Professional Notes as things change with the advancement of technology and the ability to efficiently migrate content from one tool to a different tool performing similar function or expanded functions is important. I use ReadWise (and its related tool Reader) for ebooks, Notion for web content, and Highlights for pdfs (mostly journal articles) to take notes. I migrate the notes and highlights to Obsidian directly. I also enter individual notes (Smart Notes) directly into Obsidian or code the notes and highlights migrated from the digital note-taking tools with tags and links. I am starting to get into strategies here so I will stop with this description. This sounds complicated, but a) much of this happens automatically or b) can be accomplished by copy and paste. 

Strategies

In 1972, DiVesta and Gray proposed what might be described as the classic model of note-taking describing the stages of encoding and external storage. Encoding in this case implied more than a passive transcription of information and proposed generative activities as a benefit of taking notes. I write a lot about generative activities, but here generative might simply be accepted that learners benefit from the cognitive activities in taking notes. From a research perspective, this would be demonstrated by comparing the recall or other measure of understanding of a group taking notes and another group just listening with neither group reviewing notes before attempting the test of understanding.

Kiewra and colleagues recognized that encoding was too vague and proposed that the process of taking notes could result from qualitative or quantitative benefits. More notes would require paying attention more successfully which would be a quantitative benefit. If there was a benefit to taking notes that involved the thinking that was generated in doing so, this would be a qualitative benefit. Einstein and colleagues proposed there was some evidence of a qualitative benefit based on data comparing better and poorer students because better students recalled more of content defined as more important with little difference in the recall of less important information. Some thinking while listening had to be going on to differentiate the attention paid to the more important ideas.

In general, research does show that what happens while taking the original notes is not as important as what follows. This effect is one reason I am in favor of a system that provides a way to capture more rather than fewer notes. With more notes, you have more to work with and what a learner does with this content is where the more significant benefits are produced. 

What makes sense to me is to conceptualize note use within a three-stage model. Rather than just understanding taking notes as recording and reviewing effective notetaking might benefit from an intermediate stage – revision. For example, Luo and colleagues investigated revision during pauses in a presentation or for the same amount of time immediately after the presentation and found benefits for more immediate activities working with notes. In thinking about taking notes in terms of activities during three phases that might be described as recording, revision, and review, what was done during revision and review without the time constraints of recording information in real-time during a lecture offers opportunities for cognitive activities that benefit retention and understanding.

Translating this notion of stages into a form that might be familiar to more folks who read my post. Consider the Cornell Note Method (see image below). The tools here are typically paper and pen with pages of paper divided into the three sections shown in the image (Notes, Other, and Summary). 

With a blank page divided as I have illustrated, a learner takes notes within the area I have identified as notes. I would describe this as the recording phase. During the revision stage (not a label Pauk would use in explaining his Cornell Note system, but I will use to remain consistent), the learner follows up to react to these notes with questions, insights, issues, etc. that are recorded in the Other section of the page and generates a summary that is added in the section set aside for summary. These additions are generated in reaction to the notes and represent external actions that research has shown encourage useful cognitive activities. These are not activities that would be part of a cramming before an examination study session. Cramming has entirely the wrong connotation for any part of the study process, but I use it here because it is understood and to identify the final phase of preparation before an examination. The process following the initial recording of information assumes a series of returns to the original notes first to post-process the notes to layer on external elements such as questions, comments, and a summary and then to review this combination ideally multiple times.

The Cornell system is a structured tool to some extent because use of the system assumes specific activities will follow the taking of the notes and the tool provides a structure within which these activities record an artifact of these activities. 

Tools for Professional Notes – The combination of tools I use in my own process do not structure a sequence of activities and products as concretely as the Cornell system I have described, but I do have a workflow that has some similarities, but also results in different experiences and different products. In response to the greater time delay before application and the uncertainty of how stored information will be applied result in some important differences in activity. The idea of a Second Brain is often used by those focused on Personal Knowledge Management. 

A second brain is a system or tool that helps you to collect, organize, and retrieve information. The goal of a second brain is to help you access information more easily, understand the information you have accessed, and apply this information in creative ways. Often, the best approach is to separate ideas from their original context, store important ideas with a newly created context sufficient to make the concept understandable after a significant delay, create a system of metadata that will facilitate rediscovery of these ideas after a significant delay, and offer ways to flexibly connect ideas to creatively produce new insights and products. Tags, links, and powerful search options are important for exploration and rediscovery. Like the revision and review phases I identified in my discussion of School notes, tools for Professional Notes are intended both to be explored on a regular basis (to discover new relationships and revisit ideas looking for new connections) and to use when there is a specific task to complete. 

Research

School and Professional Notes have very different research bases. School notetaking and notetaking strategies have been investigated with both laboratory and applied research techniques for years. This research has allowed the development of theoretical models explaining how learning from taking notes happens and what specific strategies seem to work best for which students. As is often the case with applied research in education, the research is probably best described as messy with inconsistent findings possibly related to many different sources of potential variability (learner characteristics, task characteristics, content differences).

The interest in Professional Notes has generated a rich literature on strategies with a very limited literature summarizing studies evaluating effectiveness. I wonder if this will change. The tools and strategies change quickly and data collection would be very difficult because the tools are used in circumstances that would make it difficult to collect data from controlled experiments. In this area, arguments are based more a battle of ideas than a battle of data. 

Sources

Di Vesta, F. & Gray, S. G. (1972). Listening and note taking. Journal of Educational Psychology, 63(1), 8-14.

Einstein, G. O., Morris, J., & Smith, S. (1985). Note-taking, individual differences, and memory for lecture information. Journal of Educational Psychology, 77(5), 522-532.

Kiewra, K. A., Mayer, R. E., Christensen, M., Kim, S., & Risch, N. (1991). Effects of repetition on recall and note-taking: Strategies for learning from lectures. Journal of Educational Psychology, 83(1), 120-123.

Luo, L., Kiewra, K. A., & Samuelson, L. (2016). Revising lecture notes: how revision, pauses, and partners affect note taking and achievement. Instructional Science, 44(1), 45-67.

Loading

Tags and stories in my first and second brains

First and second brain are terms used by those proposing strategies for learning, remembering, and applying that take advantage of external storage tools and techniques. In this descriptive system, your first brain consists of the biological organ in your body and the cognitive activities you can apply within this biological system. This combination of organ and cognitive activity accomplishes what we typically describe as remembering, thinking, and creativity. The concept of a second brain is a way of referencing external devices and activities generating some type of external representations that are intended to augment first brain functions. I purposively have made the generation of an external record a component in my description of a second brain recognizing that external activities that many might describe as study techniques exist that do not involve the generation of an external record. For example, responding to questions is proven as a way to improve retrieval and if done verbally does not involve the creation of anything permanent. Advocates of the second brain concept do emphasize the generation of a record of experiences.

I tend to equate references to the second brain with some system for taking notes. This is a simplification, but a way to quickly provide a reference for those not steeped in this topic. As I have tried to argue when referring to first brain topics, it is more than just the record that is important. It is also the variety of tactics in storage and retrieval and deciding when a given tactic should be applied that can be important.

Finally, first and second-brain proposals can and should include consideration of the interaction between these two systems. As potential users of both brains, we have some control of each system and access to a second brain implementation could change the way we make optimal use of our first brain in comparison to what might be optimal use if we had to rely on the first brain system only. 

We all or at least most of us took notes in our high school and college classes. Taking this background as a starting point, you should have a context within which to think about this topic. Now add some additional expectations. What if the goal was not to use a second brain application to prepare for next week’s exam or the paper you had to write in a couple of weeks? What if the goal was to augment your first brain function over several years in order to address life tasks you might not be even able to describe at this time? Even this later question might be applied to formal education because very few were thinking in this way when studying for that next exam or preparing for that next paper. Most of us probably cannot even find or did not keep the second brain artifacts we created while engaged in our formal education. 

Now this was a long introduction I hope was valuable in and of itself to some. Many of my previous posts concerned second-brain topics such as note-taking and second-brain technology tools. Please take a look if my introductory comments piqued your interest. I spent the time to generate this overview in order to provide a context for the content that now follows.

The application of tags in first and second brains

One of the interesting characteristics of the work of cognitive scientists and second-brain developers is how there seems to be a reciprocal impact of ideas that originate in one field on the other. While I am at it, I can see a similar reciprocity in the ideas of cognitive and AI researchers. To be clear, cognitive researchers rely on hypothetical concepts to represent yet-to-be-discovered biological functions. This is my way of thinking about the challenges of neuroscientists and cognitive researchers. Obviously, mental activity must be a function of biology, but our mastery of this field is far from being useful in addressing most human learning challenges. A hypothetical construct is a proposed mechanism for how something works that has yet to be explainable via a physical equivalent. So cognitive constructs such as short-term memory, metacognition, associative networks, links, etc. seem to be useful in understanding and even proposing effective learning strategies and this is possible without having to reference or consider the underlying biological mechanisms that must be involved. For example, we can measure short-term memory and we can propose ways to improve the effectiveness of short term without reference to actual biological structure or process. My focus in this post is on the role played by tags in both first and second brains

Shank and his focus on stories

I have been rereading Roger Shank’s Tell Me a Story. I first read the book probably 30 years ago. How I now relate to this book on human cognition and AI has changed a great deal because of my recent exposure to personal knowledge management (PKM). As the full book title indicates, Tell me a story: Narrative and intelligence is about stories serving a far different role than entertainment. Shank presents stories as playing a central role in how we think, learn, and communicate. Shank goes as far as suggesting that telling a useful story at the right time is a great sign of intelligence. He proposes that an expert is an individual who has a great number of stories relevant to a given area and has these stories indexed so that he/she can tell a useful story at the right time. He recommends that we recognize that our conversations with others often focus on stories with one individual telling a story and then the other person telling a related story to indicate he or she understands and to offer some additional element of information.

This proposal fits with my own way of thinking about human memory. In cognitive psychology, one way to describe the contents of long-term memory is to propose that meaning is retained in units of information connected by links. This web is different in each individual as differences exist in what units are stored and in how these units are linked. Explaining in detail what cognitive researchers mean by units of information can get pretty dense, but for the present purpose perhaps concepts and facts is close enough. This web is called semantic memory. In addition to the elements of meaning are episodic memories. These episodes are often described as the way we remember events and I always thought we could think of these events as stories. What I heard in class today is an episode with a progression of information. It might also be described as a story.

Some key ideas from Shank’s book:

Intelligence is an abstraction; different experts explain it and sometimes propose how it can be assessed differently. Shank argued that an individual’s use of stories could reveal a lot about how intelligent that person is. Two aspects were informative. The first is having stories worth telling and the second is being aware of which story would be effective when conveyed to a specific individual in a specific situation.

Reminding is using an input in a way that involves the prediction and generalization allowing the retrieval of relevant stored stories. Intelligence is reflected in that capacity to translate new experiences, perhaps stories told by someone else, into effective retrieval cues.

In the process of understanding, we compare experiences with what we have already experienced. This process of reminding is the basis for gaining new insights from differences between similar stories.

Thinking involves indexing. Shank proposed that a useful memory combines specific experiences and indices or labels. The more indices the better. Shank spent a great deal of effort identifying what indices people used proposing that locations, attitudes, challenges, decisions, conclusions, and other labels are used as indices.

We are not necessarily aware of the process of labeling. The application of labels can be assumed based on what individuals recall in response to an input (story/experience). A story that is recalled in response to a story told must share at least one common index.

Understanding is equivalent to the extraction of indices from an input that match the indices associated with stored stories. We learn when the identification of a match between new and old allows further analysis of differences in the stories.

Tags, links, and indices

Careful attention to Shank’s explanation of the value and role of stories is recognition that it is not the stories alone that are important, but the combination of indices and stories. The combination is important, but in addition, it is personalized through the imposition of an indexing approach that creates this productive system. Perhaps thinking about experiences searching for understanding translated as indexing.

So Shank’s importance relies on the combination of indices and stories. Cognitive researchers describe long-term memory in terms of units of information (semantic memory) and episodes linked to facilitate retrieval and understanding.  

Those developing and implementing second-brain systems offer tools (e.g., Obsidian, Mem.ai, LoqSeq) offer a digital system for storing notes, for attaching tags to notes, and for linking notes to each other. Notes are not stored as extended documents as might be the case for the handwritten notes taken during a lecture, but as individual ideas or concepts and labeled with multiple tags and one or many connections to other notes. Users are encouraged to review their notes and their system of connections periodically and to add more connections that occur to them. The goal is value over the long term.

Idea for practice

Aside from reflecting on the commonalities across these systems and how the functioning of one system might encourage how another system might be understood, here is one observation that occurred to me while completing this analysis. I don’t think the second brain advocates take advantage of the power Shank sees in how our use of the first brain relies on stories. Perhaps there is some attention to identifying and connecting examples, but I see little attention paid to the storage, tagging, and linking of stories. I told stories as examples when I lectured. In the time I have spent developing my second brain, I don’t remember ever adding and linking one of the stories I tell and I have not documented in my notes the stories I have read as examples in the sources I might translate into notes. If Shank’s argument for the value of stories is valid, not including stories in a second brain would be an opportunity missed.

Reference

Shank, R. C. (1990). Tell me a story: Narrative and intelligence. _Evanston, IL: Northwestern University Process_.

Loading